期刊文献+
共找到10篇文章
< 1 >
每页显示 20 50 100
Research Progress in Production Process of Molybdenum Disilicide Based Heating Elements in China
1
作者 GAO Jianying WANG Lianjun JIANG Wan 《China's Refractories》 CAS 2015年第4期7-12,共6页
The molybdenum disilicide (MoSi2 ) based heating element is more and more important in modern industries relating to thermal treatment, melting and sintering due to its high working temperature. In China, the consum... The molybdenum disilicide (MoSi2 ) based heating element is more and more important in modern industries relating to thermal treatment, melting and sintering due to its high working temperature. In China, the consumption of the MoSi2 heating element continues to increase with development and upgrading of industries. However, the MoSi2 heating element .from local manufacturers still has poor quality and thus results in waste of precious molybdenum resource. In this review, the recent research results of production process of MoSi2 heating elements were briefly summarized. The purity and particle size distribution of starting MoSi2 powder as well as the mixing and sintering processes were identified as major impact fators on the performance of MoSi2 heating elements. This review points out the improving direction for local MoSi2 heating elements. 展开更多
关键词 molybdenum disilicide-based heating elements POWDER nixing SINTERING PERFORMANCE
下载PDF
Relationship Between Electric Properties and Temperature of ZrB_2-SiC Composite Ceramic Heating Element
2
作者 ZHOU Sen'an GUO Jinwu LAN Ye 《China's Refractories》 CAS 2013年第4期24-27,共4页
ZrB2 -SiC composite ceramic has been successfully introduced as heating element in super high temperature .field. This paper further investigated the microstructure of ZrB2 - SiC composite ceramic heating element an... ZrB2 -SiC composite ceramic has been successfully introduced as heating element in super high temperature .field. This paper further investigated the microstructure of ZrB2 - SiC composite ceramic heating element and the relationship between electric properties and temperature. SEM photos show that the heating element consists of SiC grains and ZrBz grains smaller than 10 μm. The voltage and current gradually increase and the furnace tempera- ture rises lineally with heating time prolonging. The electric resistance increases linearly with the temperature rising. The service temperatltre of the heating element can reach 1 800 ℃ and 2 150 ℃ in air and argon at- mosphere, respectively. 展开更多
关键词 zirconium boride -silicon carbide com-posite ceramic heating element electric voltage andcurrent resistance
下载PDF
BRAKE TEST OF SiCp/A356 BRAKE DISK AND INTERPRETATION OF EXPERIMENTAL RESULTS 被引量:3
3
作者 YANG Zhiyong HAN Jianmin LI Weijing WANG Jinhua 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期74-79,共6页
Material properties are obvious different between aluminum matrix composites and iron and steel materials. After the brake disk braked at the same speed, the average temperature of the aluminum brake disk is 1.5 times... Material properties are obvious different between aluminum matrix composites and iron and steel materials. After the brake disk braked at the same speed, the average temperature of the aluminum brake disk is 1.5 times as high as one of iron and steel brake disk, the thermal expansion value of the aluminum brake disk is 2 times as big as one of iron and steel brake disk. Mechanical property of the material decreases with the temperature increasing generally during braking, on the other hand, the big thermal stress in the brake disk happens because the material expansion is constrained. Firstly, the reasons of the thermal stress generation and the fracture failure of brake disks during braking are analyzed qualitatively by virtue of three-bar stress frame and sandwich deformation principles in physic, and then the five constraints which cause the thermal stress are summarized. On the base of the experimental results on the 1:1 emergency brake test, the thermal stress and temperature fields are simulated; The behavior of the fracture failure is interpreted semi-quantitatively by finite element analysis, There is the coincident forecast for the fraction position in term of the two methods. In the end, in the light of the analysis and calculation results, it is the general principles observed by the structure design and assembly of the brake disk that are summarized. 展开更多
关键词 Brake disk Brake test Thermal stress Heat flux Finite element analysis
下载PDF
Streamline upwind finite element method for conjugate heat transfer problems 被引量:3
4
作者 Niphon Wansophark Atipong Malatip Pramote Dechaumphai 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2005年第5期436-443,共8页
This paper presents a combined finite element method for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow. The streamline upwind finite el... This paper presents a combined finite element method for solving conjugate heat transfer problems where heat conduction in a solid is coupled with heat convection in viscous fluid flow. The streamline upwind finite element method is used for the analysis of thermal viscous flow in the fluid region, whereas the analysis of heat conduction in solid region is performed by the Galerkin method. The method uses the three-node triangular element with equal-order interpolation functions for all the variables of the velocity components, the pressure and the temperature. The main advantage of the proposed method is to consistently couple heat transfer along the fluid-solid interface. Three test cases, i.e. conjugate Couette flow problem in parallel plate channel, counter-flow in heat exchanger, and conjugate natural convection in a square cavity with a conducting wall, are selected to evaluate the efficiency of the present method. 展开更多
关键词 Streamline upwind.Conjugate heat transfer.Finite element method
下载PDF
Design and Implementation of a System for Laser Assisted Milling of Advanced Materials 被引量:2
5
作者 WU Xuefeng FENG Gaocheng LIU Xianli 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第5期921-929,共9页
Laser assisted machining is an effective method to machine advanced materials with the added benefits of longer tool life and increased material removal rates. While extensive studies have investigated the machining p... Laser assisted machining is an effective method to machine advanced materials with the added benefits of longer tool life and increased material removal rates. While extensive studies have investigated the machining properties for laser assisted milling(LAML), few attempts have been made to extend LAML to machining parts with complex geometric features. A methodology for continuous path machining for LAML is developed by integration of a rotary and movable table into an ordinary milling machine with a laser beam system. The machining strategy and processing path are investigated to determine alignment of the machining path with the laser spot. In order to keep the material removal temperatures above the softening temperature of silicon nitride, the transformation is coordinated and the temperature interpolated, establishing a transient thermal model. The temperatures of the laser center and cutting zone are also carefully controlled to achieve optimal machining results and avoid thermal damage. These experiments indicate that the system results in no surface damage as well as good surface roughness, validating the application of this machining strategy and thermal model in the development of a new LAML system for continuous path processing of silicon nitride. The proposed approach can be easily applied in LAML system to achieve continuous processing and improve efficiency in laser assisted machining. 展开更多
关键词 laser assisted milling laser assisted milling device silicon nitride ceramic finite element analysis heat transfer
下载PDF
Hybrid graded element model for transient heat conduction in functionally graded materials 被引量:4
6
作者 Lei-Lei Cao Qing-Hua Qin Ning Zhao 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第1期128-139,共12页
This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a f... This paper presents a hybrid graded element model for the transient heat conduction problem in functionally graded materials (FGMs). First, a Laplace transform approach is used to handle the time variable. Then, a fundamental solution in Laplace space for FGMs is constructed. Next, a hybrid graded element is formulated based on the obtained fundamental solution and a frame field. As a result, the graded properties of FGMs are naturally reflected by using the fundamental solution to interpolate the intra-element field. Further, Stefest's algorithm is employed to convert the results in Laplace space back into the time-space domain. Finally, the performance of the proposed method is assessed by several benchmark examples. The results demonstrate well the efficiency and accuracy of the proposed method. 展开更多
关键词 Graded element model Functionally graded materials Hybrid FEM Transient heat conduction
下载PDF
Modeling effects of alloying elements and heat treatment parameters on mechanical properties of hot die steel with back-propagation artificial neural network 被引量:1
7
作者 Yong Liu Jing-chuan Zhu Yong Cao 《Journal of Iron and Steel Research(International)》 SCIE EI CAS CSCD 2017年第12期1254-1260,共7页
Materials data deep-excavation is very important in materials genome exploration.In order to carry out materials data deep-excavation in hot die steels and obtain the relationships among alloying elements,heat treatme... Materials data deep-excavation is very important in materials genome exploration.In order to carry out materials data deep-excavation in hot die steels and obtain the relationships among alloying elements,heat treatment parameters and materials properties,a 11×12×12×4 back-propagation(BP)artificial neural network(ANN)was set up.Alloying element contents,quenching and tempering temperatures were selected as input;hardness,tensile and yield strength were set as output parameters.The ANN shows a high fitting precision.The effects of alloying elements and heat treatment parameters on the properties of hot die steel were studied using this model.The results indicate that high temperature hardness increases with increasing alloying element content of C,Si,Mo,W,Ni,V and Cr to a maximum value and decreases with further increase in alloying element content.The ANN also predicts that the high temperature hardness will decrease with increasing quenching temperature,and possess an optimal value with increasing tempering temperature.This model provides a new tool for novel hot die steel design. 展开更多
关键词 Back-propagation artificial neural network Hot die steel Alloying element Heat treatment
原文传递
Characteristics of the transient thermal load and deformation of the evacuated receiver in solar parabolic trough collector 被引量:2
8
作者 LI Lu YU HuaJie +1 位作者 LI YinShi HE Ya-Ling 《Science China(Technological Sciences)》 SCIE EI CAS CSCD 2020年第7期1188-1201,共14页
As a core element in solar parabolic trough collector, the evaluated receiver often runs under severe thermal conditions. Worse still, the transient thermal load is more likely to cause structural deformation and dama... As a core element in solar parabolic trough collector, the evaluated receiver often runs under severe thermal conditions. Worse still, the transient thermal load is more likely to cause structural deformation and damage. This work develops an efficient transient multi-level multi-dimensional(M2) analysis method to address photo-thermal-elastic problems, thereby estimating transient thermal load and deformation for the receiver:(i) one-dimensional(1-D) thermo-hydraulic model is adopted to determine the transient thermo-hydraulic state,(ii) 3-D finite volume method(FVM) model for the receiver tube is established to obtain the real-time temperature distribution,(iii) 3-D finite element method(FEM) model is employed to make thermoelastic analysis. Based on this M2 method, the typical transient cases are conducted in cold-start, disturbed-operation and regulatedprocess. Three indicators(average temperature of the wall(ATW), radial temperature difference(RTD), circumferential temperature difference(CTD)) are defined for overall analysis of the receiver thermal load. It is found that in the transient process,receivers face response delay and endure significant thermal load fluctuation. The response time for a single HCE(heat collecting element) under lower mass flow rate(1.5 kg s-1) could sustain 280 s. During the cold-start stage(DNI=200 W m-2 to 800 W m-2), the maximum value of CTD in receiver is as high as 11.67℃, corresponding to a maximum deflection of 1.05 cm.When the mass flow rate decreases sharply by 80%, the CTD reaches 33.04℃, causing a 2.06-cm deflection. It should be pointed out that in the cold-start stage and the lower mass flow rate operation for solar parabolic trough collector, alleviating the transient thermal load and deformation is of importance for safely and efficiently running evaluated receiver. 展开更多
关键词 solar energy transient thermal load and deformation heat collecting element parabolic trough collector multi-level multi-dimensional analysis method
原文传递
Discrete element method for high-temperature spread in compacted powder systems 被引量:1
9
作者 Shuang Wang Zhoushun Zheng 《Particuology》 SCIE EI CAS CSCD 2017年第2期49-53,共5页
The discrete element method is applied to investigate high-temperature spread in compacted metallic particle systems formed by high-velocity compaction. Assuming that heat transfer only occurs at contact zone between ... The discrete element method is applied to investigate high-temperature spread in compacted metallic particle systems formed by high-velocity compaction. Assuming that heat transfer only occurs at contact zone between particles, a discrete equation based on continuum mechanics is proposed to investigate the heat flux. Heat generated internally by friction between moving particles is determined by kinetic equations. For the proposed model, numerical results are obtained by a particle-flow-code-based program. Temperature profiles are determined at different locations and times. At a fixed location, the increase in temperature shows a logarithmic relationship with time. Investigation of three different systems indicates that the geometric distribution of the particulate material is one of the main influencing factors for the heat conduction process. Higher temperature is generated for denser packing, and vice versa. For smaller uniform particles, heat transfers more rapidly. 展开更多
关键词 Discrete element method Heat conduction Friction heat Numerical simulation
原文传递
Heat Transfer,Knock Modeling and Cyclic Variability in a “Downsized”Spark-Ignition Turbocharged Engine
10
作者 Fabio Bozza Daniela Siano Michela Costa 《Advances in Applied Mathematics and Mechanics》 SCIE 2011年第3期310-326,共17页
In the present paper a combined procedure for the quasi-dimensional modelling of heat transfer,combustion and knock phenomena in a “downsized”Spark Ignition two-cylinder turbocharged engine is presented.The procedur... In the present paper a combined procedure for the quasi-dimensional modelling of heat transfer,combustion and knock phenomena in a “downsized”Spark Ignition two-cylinder turbocharged engine is presented.The procedure is extended to also include the effects consequent the Cyclic Variability.Heat transfer is modelled by means of a Finite Elements model.Combustion simulation is based on a fractal description of the flame front area.Cyclic Variability(CV)is characterized through the introduction of a random variation on a number of parameters controlling the rate of heat release(air/fuel ratio,initial flame kernel duration and radius,laminar flame speed,turbulence intensity).The intensity of the random variation is specified in order to realize a Coefficient Of Variation(COV)of the Indicated Mean Effective Pressure(IMEP)similar to the one measured during an experimental campaign.Moreover,the relative importance of the various concurring effects is established on the overall COV.A kinetic scheme is then solved within the unburned gas zone,characterized by different thermodynamic conditions occurring cycle-by-cycle.In this way,an optimal choice of the “knock-limited”spark advance is effected and compared with experimental data.Finally,the CV effects on the occurrence of individual knocking cycles are assessed and discussed. 展开更多
关键词 Finite elements in heat transfer internal combustion engines modelling cyclic variability KNOCK
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部