In recent years,heavy ion accelerator technology has been rapidly developing worldwide and widely applied in the fields of space radiation simulation and particle therapy.Usually,a very high uniformity in the irradiat...In recent years,heavy ion accelerator technology has been rapidly developing worldwide and widely applied in the fields of space radiation simulation and particle therapy.Usually,a very high uniformity in the irradiation area is required for the extracted ion beams,which is crucial because it directly affects the experimental precision and therapeutic effect.Specifically,ultra-large-area and high-uniformity scanning are crucial requirements for spacecraft radiation effects assessment and serve as core specification for beamline terminal design.In the 300 MeV proton and heavy ion accelerator complex at the Space Environment Simulation and Research Infrastructure(SESRI),proton and heavy ion beams will be accelerated and ultimately delivered to three irradiation terminals.In order to achieve the required large irradiation area of 320 mm×320 mm,horizontal and vertical scanning magnets are used in the extraction beam line.However,considering the various requirements for beam species and energies,the tracking accuracy of power supplies(PSs),the eddy current effect of scanning magnets,and the fluctuation of ion bunch structure will reduce the irradiation uniformity.To mitigate these effects,a beam uniformity optimization method based on the measured beam distribution was proposed and applied in the accelerator complex at SESRI.In the experiment,the uniformity is successfully optimized from 75%to over 90%after five iterations of adjustment to the PS waveforms.In this paper,the method and experimental results were introduced.展开更多
In this paper,high-energy Ne ions were used to irradiate Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) metallic glass(MG)and crystalline W to investigate their difference in mechanical response after irradiation.The results showed t...In this paper,high-energy Ne ions were used to irradiate Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) metallic glass(MG)and crystalline W to investigate their difference in mechanical response after irradiation.The results showed that with the irradiation dose increased,the tensile micro-strain increased,nano-hardness increased from 7.11 GPa to 7.90 GPa and 8.62 GPa,Young’s modulus increased,and H3/E2 increased which indicating that the plastic deformability decreased in crystalline W.Under the same irradiation conditions,the Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG still maintained the amorphous structure and became more disordered despite the longer range and stronger displacement damage of Ne ions in Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG than in crystalline W.Unlike the irradiation hardening and embrittlement behavior of crystalline W,Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG showed the gradual decrease in hardness from 6.02 GPa to 5.89 GPa and 5.50 GPa,the decrease in modulus and the increase in plastic deformability with the increasing dose.Possibly,the irradiation softening and toughening phenomenon of Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG could provide new ideas for the design of nuclear materials.展开更多
Bipolar junction transistors(BJTs) are often used in spacecraft due to their excellent working characteristics. However,the complex space radiation environment induces primary knock-on atoms(PKAs) in BJTs through coll...Bipolar junction transistors(BJTs) are often used in spacecraft due to their excellent working characteristics. However,the complex space radiation environment induces primary knock-on atoms(PKAs) in BJTs through collisions, resulting in hard-to-recover displacement damage and affecting the performance of electronic components. In this paper, the properties of PKAs induced by typical space heavy ions(C, N, O, Fe) in BJTs are investigated using Monte Carlo simulations. The simulated results show that the energy spectrum of ion-induced PKAs is primarily concentrated in the low-energy range(17eV–100eV) and displays similar features across all tested ions. The PKAs induced by the collision of energetic ions have large forward scattering angles, mainly around 88°. Moreover, the distribution of PKAs within a transistor as a function of depth displays a peak characteristic, and the peak position is linearly proportional to the incident energy at a certain energy range. These simulation outcomes serve as crucial theoretical support for long-term semiconductor material defect evolution and ground testing of semiconductor devices.展开更多
Heavy Ion Fusion makes use of the Relativistic Heavy Ion Collider at Brookhaven National Lab and the Large Hadron Collider in Geneva, Switzerland for Inertial Confinement Fusion. Two Storage Rings, which may or may no...Heavy Ion Fusion makes use of the Relativistic Heavy Ion Collider at Brookhaven National Lab and the Large Hadron Collider in Geneva, Switzerland for Inertial Confinement Fusion. Two Storage Rings, which may or may not initially be needed, added to each of the Colliders increases the intensity of the Heavy Ion Beams making it comparable to the Total Energy delivered to the DT target by the National Ignition Facility at the Lawrence Livermore Lab. The basic Physics involved gives Heavy Ion Fusion an advantage over Laser Fusion because heavy ions have greater penetration power than photons. The Relativistic Heavy Ion Collider can be used as a Prototype Heavy Ion Fusion Reactor for the Large Hadron Collider.展开更多
The 28 nm process has a high cost-performance ratio and has gradually become the standard for the field of radiation-hardened devices.However,owing to the minimum physical gate length of only 35 nm,the physical area o...The 28 nm process has a high cost-performance ratio and has gradually become the standard for the field of radiation-hardened devices.However,owing to the minimum physical gate length of only 35 nm,the physical area of a standard 6T SRAM unit is approximately 0.16μm^(2),resulting in a significant enhancement of multi-cell charge-sharing effects.Multiple-cell upsets(MCUs)have become the primary physical mechanism behind single-event upsets(SEUs)in advanced nanometer node devices.The range of ionization track effects increases with higher ion energies,and spacecraft in orbit primarily experience SEUs caused by high-energy ions.However,ground accelerator experiments have mainly obtained low-energy ion irradiation data.Therefore,the impact of ion energy on the SEU cross section,charge collection mechanisms,and MCU patterns and quantities in advanced nanometer devices remains unclear.In this study,based on the experimental platform of the Heavy Ion Research Facility in Lanzhou,low-and high-energy heavy-ion beams were used to study the SEUs of 28 nm SRAM devices.The influence of ion energy on the charge collection processes of small-sensitive-volume devices,MCU patterns,and upset cross sections was obtained,and the applicable range of the inverse cosine law was clarified.The findings of this study are an important guide for the accurate evaluation of SEUs in advanced nanometer devices and for the development of radiation-hardening techniques.展开更多
Experiments and simulation studies on 283 MeV I ion induced single event effects of silicon carbide(SiC) metal–oxide–semiconductor field-effect transistors(MOSFETs) were carried out. When the cumulative irradiation ...Experiments and simulation studies on 283 MeV I ion induced single event effects of silicon carbide(SiC) metal–oxide–semiconductor field-effect transistors(MOSFETs) were carried out. When the cumulative irradiation fluence of the SiC MOSFET reached 5×10^(6)ion·cm^(-2), the drain–gate channel current increased under 200 V drain voltage, the drain–gate channel current and the drain–source channel current increased under 350 V drain voltage. The device occurred single event burnout under 800 V drain voltage, resulting in a complete loss of breakdown voltage. Combined with emission microscope, scanning electron microscope and focused ion beam analysis, the device with increased drain–gate channel current and drain–source channel current was found to have drain–gate channel current leakage point and local source metal melt, and the device with single event burnout was found to have local melting of its gate, source, epitaxial layer and substrate. Combining with Monte Carlo simulation and TCAD electrothermal simulation, it was found that the initial area of single event burnout might occur at the source–gate corner or the substrate–epitaxial interface, electric field and current density both affected the lattice temperature peak. The excessive lattice temperature during the irradiation process appeared at the local source contact, which led to the drain–source channel damage. And the excessive electric field appeared in the gate oxide layer, resulting in drain–gate channel damage.展开更多
Heavy ion irradiation effects on charge trapping memory(CTM)capacitors with TiN/Al_(2)O_(3)/HfO_(2)/Al_(2)O_(3)/HfO_(2)/SiO_(2)/p-Si structure have been investigated.The ion-induced interface charges and oxide trap ch...Heavy ion irradiation effects on charge trapping memory(CTM)capacitors with TiN/Al_(2)O_(3)/HfO_(2)/Al_(2)O_(3)/HfO_(2)/SiO_(2)/p-Si structure have been investigated.The ion-induced interface charges and oxide trap charges were calculated and analyzed by capacitance-voltage(C-V)characteristics.The C-V curves shift towards the negative direction after swift heavy ion irradiation,due to the net positive charges accumulating in the trapping layer.The memory window decreases with the increase of ion fluence at high voltage,which results from heavy ion-induced structural damage in the blocking layer.The mechanism of heavy ion irradiation effects on CTM capacitors is discussed in detail with energy band diagrams.The results may help to better understand the physical mechanism of heavy ion-induced degradation of CTM capacitors.展开更多
[Objective] This study aimed to investigate the effects of heavy-ion beams irradiation on the seed germination potential, survival rate, antioxidant enzyme activi- ties and lipid peroxidation of sweet sorghum. [Method...[Objective] This study aimed to investigate the effects of heavy-ion beams irradiation on the seed germination potential, survival rate, antioxidant enzyme activi- ties and lipid peroxidation of sweet sorghum. [Method] The dry seeds were irradiated by '2(36. heavy ion beams with absorbed doses: 0, 40, 80, 120, 160 and 200 Gy, respectively. Then, the seed germination potential, survival rate, antioxidant enzyme activities and lipid peroxidation of sweet sorghum were measured. [Result] Heavy-ion beams irradiation exhibited different influence on germination potential and survival rates. Germination rate showed a downward trend, but the corresponding survival curve of seedlings was saddle-shaped. The activities of SOD, POD, CAT and ASA- POD changed in different trends as well. The MDA content rose toward increasing irradiation dose, suggesting that high dose of heavy-ion beams irradiation enhanced the damage to membrane of sweet sorghum seedlings. [Conclusion] After being irra- diated, germination potential and survival rates of sweet sorghum were decreased, and antioxidant enzymes activity changed greatly. This study laid the basis for fur- ther work on breeding and improvement of sweet sorghum irradiated by ,^(12)C^(6+) heavy ion beams.展开更多
Heavy metals,notably Pb2+and Cu^(2+),are some of the most persistent contaminants found in groundwater.Frequent monitoring of these metals,which relies on efficient,sensitive,cost-effective,and reliable methods,is a n...Heavy metals,notably Pb2+and Cu^(2+),are some of the most persistent contaminants found in groundwater.Frequent monitoring of these metals,which relies on efficient,sensitive,cost-effective,and reliable methods,is a necessity.We present a nanocomposite-based miniaturized electrode for the concurrent measurement of Pb2+and Cu^(2+)by exploiting the electroanalytical technique of square wave voltammetry.We also propose a facile in situ hydrothermal calcination method to directly grow binder-free mesoporous Ni O on a three-dimensional nickel foam,which is then electrochemically seeded with gold nanoparticles(Au NPs).The meticulous design of a low-barrier Ohmic contact between mesoporous Ni O and Au NPs facilitates target-mediated nanochannel-confined electron transfer within mesoporous Ni O.As a result,the heavy metals Pb2+(0.020 mg.L^(-1)detection limit;2.0–16.0 mg.L^(-1)detection range)and Cu^(2+)(0.013 mg.L^(-1)detection limit;0.4–12.8 mg.L^(-1)detection range)can be detected simultaneously with high precision.Furthermore,other heavy metal ions and common interfering ions found in groundwater showed negligible impacts on the electrode’s performance,and the recovery rate of groundwater samples varied between 96.3%±2.1%and 109.4%±0.6%.The compactness,flexible shape,low power consumption,and ability to remotely operate our electrode pave the way for onsite detection of heavy metals in groundwater,thereby demonstrating the potential to revolutionize the field of environmental monitoring.展开更多
Heavy ion beams with high linear energy transfer exhibit more beneifcial physical and biological performance than conventional X-rays, thus improving the potential of this type of radiotherapy in the treatment of canc...Heavy ion beams with high linear energy transfer exhibit more beneifcial physical and biological performance than conventional X-rays, thus improving the potential of this type of radiotherapy in the treatment of cancer. However, these two radiotherapy modalities both cause inevitable brain injury. The objective of this study was to evaluate the effects of heavy ion and X-ray irra-diation on the cytoskeleton and cytomechanical properties of rat cortical neurons, as well as to determine the potential mechanism of neuronal injury after irradiation. Cortical neurons from 30 new-born mice were irradiated with heavy ion beams at a single dose of 2 Gy and X-rays at a single dose of 4 Gy;subsequent evaluation of their effects were carried out at 24 hours after irradiation. An immunolfuorescence assay showed that after irradiation with both the heavy ion beam and X-rays, the number of primary neurons was signiifcantly decreased, and there was ev-idence of apoptosis. Radiation-induced neuronal injury was more apparent after X-irradiation. Under atomic force microscopy, the neuronal membrane appeared rough and neuronal rigidity had increased. These cell changes were more apparent following exposure to X-rays. Our ifnd-ings indicated that damage caused by heavy ion and X-ray irradiation resulted in the structural distortion and rearrangement of the cytoskeleton, and affected the cytomechanical properties of the cortical neurons. Moreover, this radiation injury to normal neurons was much severer after irradiation with X-rays than after heavy ion beam irradiation.展开更多
Based on the National Oceanic and Atmospheric Administration (NOAA) daily satellite dataset of global outgoing longwave radiation (OLR) for the period of 1974-2004 and the NCEP-NCAR reanalysis for 1971- 2004, the ...Based on the National Oceanic and Atmospheric Administration (NOAA) daily satellite dataset of global outgoing longwave radiation (OLR) for the period of 1974-2004 and the NCEP-NCAR reanalysis for 1971- 2004, the linkage between persistent heavy rainfall (PHR) events in the vicinity of the Yangtze River valley and global OLR leading up to those events (with 1- to 3O-day lag) was investigated. The results reveal that there is a significant connection between the initiation of PHR events over the study area and anomalous convective activity over the tropical Indian Ocean, maritime continent, and tropical western Pacific Ocean. During the 30-day period prior to the onset of PHR events, the major significantly anomalous convective centers have an apparent dipole structure, always with enhanced convection in the west and suppressed convection in the east. This dipole structure continuously shifts eastward with time during the 30-day lead period. The influence of the anomalous convective activity over the tropical oceans on the initiation of PHR events over the study area is achieved via an interaction between tropical and extratropical latitudes. More specifically, anomalous convective activity weakens the Walker circulation cell over the tropical Indian Ocean first. This is followed by a weakening of the Indian summer monsoon background state and the excitation and dispersion of Rossby wave activity over Eurasia. Finally, a major modulation of the large scale background circulation occurs. As a result, the condition of a phase-lock among major large scale circulation features favoring PHR events is established over the study area.展开更多
AlGaN/GaN high electron mobility transistors (HEMTs) were irradiated by 256 MeV 127I ions with a fluence up to 1 × 10^10 ions/cm2 at the HI-13 heavy ion accelerator of the China Institute of Atomic Energy. Bot...AlGaN/GaN high electron mobility transistors (HEMTs) were irradiated by 256 MeV 127I ions with a fluence up to 1 × 10^10 ions/cm2 at the HI-13 heavy ion accelerator of the China Institute of Atomic Energy. Both the drain current ld and the gate current Ig increased in off-state during irradiation. Post-irradiation measurement results show that the device output, transfer, and gate characteristics changed significantly. The saturation drain current, reverse gate leakage current, and the gate-lag all increased dramatically. By photo emission microscopy, electroluminescence hot spots were found in the gate area. All of the parameters were retested after one day and after one week, and no obvious annealing effect was observed under a temperature of 300 K. Further analysis demonstrates that swift heavy ions produced latent tracks along the ion trajectories through the hetero-junction. Radiation-induced defects in the latent tracks decreased the charges in the two-dimensional electron gas and reduced the carrier mobility, degrading device performance.展开更多
In the present study, we used a proteomics approach based on a two-dimensional electrophoresis (2-DE) reference map to investigate protein expression in the ovarian tissues of pubertal Swiss-Webster mice subjected t...In the present study, we used a proteomics approach based on a two-dimensional electrophoresis (2-DE) reference map to investigate protein expression in the ovarian tissues of pubertal Swiss-Webster mice subjected to carbon ion radiation (CIR). Among the identified proteins, ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) is associated with the cell cycle[1] and that it influences proliferation in ovarian tissues. We analyzed the expression of UCH-L1 and the proliferation marker proliferation cell nuclear antigen (PCNA) following CIR using immunoblotting and immunofluorescence. The proteomics and biochemical results provide insight into the underlying mechanisms of CIR toxicity in ovarian tissues.展开更多
The degradations in NPN silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) were fully studied in this work, by means of 25-MeV Si, 10-MeV C1, 20-MeV Br, and 10-MeV Br ion irradiation, respectively....The degradations in NPN silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) were fully studied in this work, by means of 25-MeV Si, 10-MeV C1, 20-MeV Br, and 10-MeV Br ion irradiation, respectively. Electrical parameters such as the base current (IB), current gain (β), neutral base recombination (NBR), and Early voltage (VA) were investigated and used to evaluate the tolerance to heavy ion irradiation. Experimental results demonstrate that device degradations are indeed radiation-source-dependent, and the larger the ion nuclear energy loss is, the more the displacement damages are, and thereby the more serious the performance degradation is. The maximum degradation was observed in the transistors irradiated by 10-MeV Br. For 20-MeV and 10-MeV Br ion irradiation, an unexpected degradation in Ic was observed and Early voltage decreased with increasing ion fluence, and NBR appeared to slow down at high ion fluence. The degradations in SiGe HBTs were mainly attributed to the displacement damages created by heavy ion irradiation in the transistors. The underlying physical mechanisms are analyzed and investigated in detail.展开更多
Struvite(MAP)crystallization technology is widely used to treat ammonia nitrogen in waste effluents of its simple operation and good removal efficiency.However,the presence of heavy metal ions in the waste effluents c...Struvite(MAP)crystallization technology is widely used to treat ammonia nitrogen in waste effluents of its simple operation and good removal efficiency.However,the presence of heavy metal ions in the waste effluents causes problems such as slow crystallization rate and small crystal size,limiting the recovery rate and economic value of the MAP.The present study was conducted to investigate the effects of concentrations of three heavy metal ions(Cu^(2+),Zn^(2+),and Pb^(2+))on the crystal morphology,crystal size,average growth rate,and crystallization kinetics of MAP.A relationship was established between the kinetic rate constant Ktcalculated by the chemical gradient model and the concentrations of heavy metal ions.The results showed that low concentrations of heavy metal ions in the solution created pits on the MAP surface,and high level of heavy metal ions generated flocs on the MAP surface,which were composed of metal hydroxides,thus inhibiting crystal growth.The crystal size,average growth rate,MAP crystallization rate,and kinetic rate constant Ktdecreased with the increase in heavy metal ion concentration.Moreover,the Ktdemonstrated a linear relationship with the heavy metal concentration ln(C/C~*),which provided a reference for the optimization of the MAP crystallization process in the presence of heavy metal ions.展开更多
The variations of single event transient(SET)pulse width of high-LET heavy ion irradiation in 16-nm-thick bulk silicon fin field-effect transistor(Fin FET)inverter chains with different driven strengths are measured a...The variations of single event transient(SET)pulse width of high-LET heavy ion irradiation in 16-nm-thick bulk silicon fin field-effect transistor(Fin FET)inverter chains with different driven strengths are measured at different temperatures.Three-dimensional(3D)technology computer-aided design simulations are carried out to study the SET pulse width and saturation current varying with temperature.Experimental and simulation results indicate that the increase in temperature will enhance the parasitic bipolar effect of bulk Fin FET technology,resulting in the increase of SET pulse width.On the other hand,the increase of inverter driven strength will change the layout topology,which has a complex influence on the SET temperature effects of Fin FET inverter chains.The experimental and simulation results show that the device with the strongest driven strength has the least dependence on temperature.展开更多
A new method to prepare radiation shielding functional aggregate is described, and an appropriate mix ratio and a reasonable calcinated condition was engaged. The y-ray shielding capability of both the new functional ...A new method to prepare radiation shielding functional aggregate is described, and an appropriate mix ratio and a reasonable calcinated condition was engaged. The y-ray shielding capability of both the new functional aggregates and some other nature aggregates had been measured. The linear attenuation coefficients (μ, cm-1) of these aggregates had been calculated at photon energies from 1 keV to 10GeV using XCOM program, and measured at the photon energies of 662 keV, showing good agreement between experimental and calculated results. The results show that the y-ray shielding capacity of the new functional aggregates has been improved substantially compared with basalt, almost equal to serpentine and high-titanium slag, and up to 80% to barite.展开更多
This paper mainly reports the permanent impact of displacement damage induced by heavy-ion strikes on the deepsubmicron MOSFETs. Upon the heavy ion track through the device, it can lead to displacement damage, includi...This paper mainly reports the permanent impact of displacement damage induced by heavy-ion strikes on the deepsubmicron MOSFETs. Upon the heavy ion track through the device, it can lead to displacement damage, including the vacancies and the interstitials. As the featured size of device scales down, the damage can change the dopant distribution in the channel and source/drain regions through the generation of radiation-induced defects and thus have significant impacts on their electrical characteristics. The measured results show that the radiation-induced damage can cause DC characteristics degradations including the threshold voltage, subthreshold swing, saturation drain current, transconductanee, etc. The radiation-induced displacement damage may become the dominant issue while it was the secondary concern for the traditional devices after the heavy ion irradiation. The samples are also irradiated by Co- 60 gamma ray for comparison with the heavy ion irradiation results. Corresponding explanations and analysis are discussed.展开更多
A magnetized cylindrical target composed of a gold tube filled with deuterium-tritium fuel plasma at low density is studied numerically in the present paper.A shock wave is produced when a heavy ion beam heats the gol...A magnetized cylindrical target composed of a gold tube filled with deuterium-tritium fuel plasma at low density is studied numerically in the present paper.A shock wave is produced when a heavy ion beam heats the gold along the direction of the magnetic field.The density peak of the shock wave increases with the increase in time and it propagates in the-r direction in the cylindrical tube.It seems that this wave is the supermagnetosonic wave.It is found that the Mach number M is between 6.96 and 19.19.The density peak of the shock wave increases as the intensity of the heavy ion beam increases.Furthermore,the density peak of the shock wave increases as the external magnetic field increases.展开更多
The electrical characteristics and microstructures ofβ-Ga_(2)O_(3) Schottky barrier diode(SBD)devices irradiated with swift heavy ions(2096 MeV Ta ions)have been studied.It was found thatβ-Ga_(2)O_(3) SBD devices sh...The electrical characteristics and microstructures ofβ-Ga_(2)O_(3) Schottky barrier diode(SBD)devices irradiated with swift heavy ions(2096 MeV Ta ions)have been studied.It was found thatβ-Ga_(2)O_(3) SBD devices showed the reliability degradation after irradiation,including turn-on voltage Von,on-resistance Ron,ideality factor n,and the reverse leakage current density Jr.In addition,the carrier concentration of the drift layer was decreased significantly and the calculated carrier removal rates were 5×10^(6)-1.3×10^(7)cm^(-1).Latent tracks induced by swift heavy ions were observed visually in the wholeβ-Ga2O3 matrix.Furthermore,crystal structure of tracks was amorphized completely.The latent tracks induced by Ta ions bombardments were found to be the reason for the decrease in carrier mobility and carrier concentration.Eventually,these defects caused the degradation of electrical characteristics of the devices.In terms of the carrier removal rates,theβ-Ga_(2)O_(3) SBD devices were more sensitive to swift heavy ions irradiation than SiC and GaN devices.展开更多
基金Supported by National Key R&D Program of China(2019YFA0405400)。
文摘In recent years,heavy ion accelerator technology has been rapidly developing worldwide and widely applied in the fields of space radiation simulation and particle therapy.Usually,a very high uniformity in the irradiation area is required for the extracted ion beams,which is crucial because it directly affects the experimental precision and therapeutic effect.Specifically,ultra-large-area and high-uniformity scanning are crucial requirements for spacecraft radiation effects assessment and serve as core specification for beamline terminal design.In the 300 MeV proton and heavy ion accelerator complex at the Space Environment Simulation and Research Infrastructure(SESRI),proton and heavy ion beams will be accelerated and ultimately delivered to three irradiation terminals.In order to achieve the required large irradiation area of 320 mm×320 mm,horizontal and vertical scanning magnets are used in the extraction beam line.However,considering the various requirements for beam species and energies,the tracking accuracy of power supplies(PSs),the eddy current effect of scanning magnets,and the fluctuation of ion bunch structure will reduce the irradiation uniformity.To mitigate these effects,a beam uniformity optimization method based on the measured beam distribution was proposed and applied in the accelerator complex at SESRI.In the experiment,the uniformity is successfully optimized from 75%to over 90%after five iterations of adjustment to the PS waveforms.In this paper,the method and experimental results were introduced.
基金supported by National Natural Science Foundation of China(Nos.12305224,U23B2099 and 11975065)the Natural Science Foundation of Liaoning Province(No.2021-BS-223)+1 种基金the Liaoning Provincial Department of Education Youth Fund Project(No.LJKQZ20222309)supports from the National Laboratory of Heavy-ion Research Facility(HIRFL)in the Institute of Modern Physics in Lanzhou,China.
文摘In this paper,high-energy Ne ions were used to irradiate Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) metallic glass(MG)and crystalline W to investigate their difference in mechanical response after irradiation.The results showed that with the irradiation dose increased,the tensile micro-strain increased,nano-hardness increased from 7.11 GPa to 7.90 GPa and 8.62 GPa,Young’s modulus increased,and H3/E2 increased which indicating that the plastic deformability decreased in crystalline W.Under the same irradiation conditions,the Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG still maintained the amorphous structure and became more disordered despite the longer range and stronger displacement damage of Ne ions in Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG than in crystalline W.Unlike the irradiation hardening and embrittlement behavior of crystalline W,Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG showed the gradual decrease in hardness from 6.02 GPa to 5.89 GPa and 5.50 GPa,the decrease in modulus and the increase in plastic deformability with the increasing dose.Possibly,the irradiation softening and toughening phenomenon of Zr_(63.5)Cu_(23)Al_(9)Fe_(4.5) MG could provide new ideas for the design of nuclear materials.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.11974091,51973046,U22B2044,and 21673025)the Open Projects of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect (Grant No.SKLIPR2020)。
文摘Bipolar junction transistors(BJTs) are often used in spacecraft due to their excellent working characteristics. However,the complex space radiation environment induces primary knock-on atoms(PKAs) in BJTs through collisions, resulting in hard-to-recover displacement damage and affecting the performance of electronic components. In this paper, the properties of PKAs induced by typical space heavy ions(C, N, O, Fe) in BJTs are investigated using Monte Carlo simulations. The simulated results show that the energy spectrum of ion-induced PKAs is primarily concentrated in the low-energy range(17eV–100eV) and displays similar features across all tested ions. The PKAs induced by the collision of energetic ions have large forward scattering angles, mainly around 88°. Moreover, the distribution of PKAs within a transistor as a function of depth displays a peak characteristic, and the peak position is linearly proportional to the incident energy at a certain energy range. These simulation outcomes serve as crucial theoretical support for long-term semiconductor material defect evolution and ground testing of semiconductor devices.
文摘Heavy Ion Fusion makes use of the Relativistic Heavy Ion Collider at Brookhaven National Lab and the Large Hadron Collider in Geneva, Switzerland for Inertial Confinement Fusion. Two Storage Rings, which may or may not initially be needed, added to each of the Colliders increases the intensity of the Heavy Ion Beams making it comparable to the Total Energy delivered to the DT target by the National Ignition Facility at the Lawrence Livermore Lab. The basic Physics involved gives Heavy Ion Fusion an advantage over Laser Fusion because heavy ions have greater penetration power than photons. The Relativistic Heavy Ion Collider can be used as a Prototype Heavy Ion Fusion Reactor for the Large Hadron Collider.
基金supported by the National Natural Science Foundation of China(Nos.12105341 and 12035019)the opening fund of Key Laboratory of Silicon Device and Technology,Chinese Academy of Sciences(No.KLSDTJJ2022-3).
文摘The 28 nm process has a high cost-performance ratio and has gradually become the standard for the field of radiation-hardened devices.However,owing to the minimum physical gate length of only 35 nm,the physical area of a standard 6T SRAM unit is approximately 0.16μm^(2),resulting in a significant enhancement of multi-cell charge-sharing effects.Multiple-cell upsets(MCUs)have become the primary physical mechanism behind single-event upsets(SEUs)in advanced nanometer node devices.The range of ionization track effects increases with higher ion energies,and spacecraft in orbit primarily experience SEUs caused by high-energy ions.However,ground accelerator experiments have mainly obtained low-energy ion irradiation data.Therefore,the impact of ion energy on the SEU cross section,charge collection mechanisms,and MCU patterns and quantities in advanced nanometer devices remains unclear.In this study,based on the experimental platform of the Heavy Ion Research Facility in Lanzhou,low-and high-energy heavy-ion beams were used to study the SEUs of 28 nm SRAM devices.The influence of ion energy on the charge collection processes of small-sensitive-volume devices,MCU patterns,and upset cross sections was obtained,and the applicable range of the inverse cosine law was clarified.The findings of this study are an important guide for the accurate evaluation of SEUs in advanced nanometer devices and for the development of radiation-hardening techniques.
基金supported by the National Natural Science Foundation of China (Grant No. 12075065)。
文摘Experiments and simulation studies on 283 MeV I ion induced single event effects of silicon carbide(SiC) metal–oxide–semiconductor field-effect transistors(MOSFETs) were carried out. When the cumulative irradiation fluence of the SiC MOSFET reached 5×10^(6)ion·cm^(-2), the drain–gate channel current increased under 200 V drain voltage, the drain–gate channel current and the drain–source channel current increased under 350 V drain voltage. The device occurred single event burnout under 800 V drain voltage, resulting in a complete loss of breakdown voltage. Combined with emission microscope, scanning electron microscope and focused ion beam analysis, the device with increased drain–gate channel current and drain–source channel current was found to have drain–gate channel current leakage point and local source metal melt, and the device with single event burnout was found to have local melting of its gate, source, epitaxial layer and substrate. Combining with Monte Carlo simulation and TCAD electrothermal simulation, it was found that the initial area of single event burnout might occur at the source–gate corner or the substrate–epitaxial interface, electric field and current density both affected the lattice temperature peak. The excessive lattice temperature during the irradiation process appeared at the local source contact, which led to the drain–source channel damage. And the excessive electric field appeared in the gate oxide layer, resulting in drain–gate channel damage.
基金the National Natural Science Foundation of China(Grant Nos.12105340,12035019,and12075290)the Youth Innovation Promotion Association of the Chinese Academy of Sciences(Grant No.2020412)。
文摘Heavy ion irradiation effects on charge trapping memory(CTM)capacitors with TiN/Al_(2)O_(3)/HfO_(2)/Al_(2)O_(3)/HfO_(2)/SiO_(2)/p-Si structure have been investigated.The ion-induced interface charges and oxide trap charges were calculated and analyzed by capacitance-voltage(C-V)characteristics.The C-V curves shift towards the negative direction after swift heavy ion irradiation,due to the net positive charges accumulating in the trapping layer.The memory window decreases with the increase of ion fluence at high voltage,which results from heavy ion-induced structural damage in the blocking layer.The mechanism of heavy ion irradiation effects on CTM capacitors is discussed in detail with energy band diagrams.The results may help to better understand the physical mechanism of heavy ion-induced degradation of CTM capacitors.
基金Supported by Knowledge Innovation Program of the Chinese Academy of Sciences(KJCX2-EW-N05)~~
文摘[Objective] This study aimed to investigate the effects of heavy-ion beams irradiation on the seed germination potential, survival rate, antioxidant enzyme activi- ties and lipid peroxidation of sweet sorghum. [Method] The dry seeds were irradiated by '2(36. heavy ion beams with absorbed doses: 0, 40, 80, 120, 160 and 200 Gy, respectively. Then, the seed germination potential, survival rate, antioxidant enzyme activities and lipid peroxidation of sweet sorghum were measured. [Result] Heavy-ion beams irradiation exhibited different influence on germination potential and survival rates. Germination rate showed a downward trend, but the corresponding survival curve of seedlings was saddle-shaped. The activities of SOD, POD, CAT and ASA- POD changed in different trends as well. The MDA content rose toward increasing irradiation dose, suggesting that high dose of heavy-ion beams irradiation enhanced the damage to membrane of sweet sorghum seedlings. [Conclusion] After being irra- diated, germination potential and survival rates of sweet sorghum were decreased, and antioxidant enzymes activity changed greatly. This study laid the basis for fur- ther work on breeding and improvement of sweet sorghum irradiated by ,^(12)C^(6+) heavy ion beams.
基金supported by the National Key Research and Development Project of China(2019YFC1804802)。
文摘Heavy metals,notably Pb2+and Cu^(2+),are some of the most persistent contaminants found in groundwater.Frequent monitoring of these metals,which relies on efficient,sensitive,cost-effective,and reliable methods,is a necessity.We present a nanocomposite-based miniaturized electrode for the concurrent measurement of Pb2+and Cu^(2+)by exploiting the electroanalytical technique of square wave voltammetry.We also propose a facile in situ hydrothermal calcination method to directly grow binder-free mesoporous Ni O on a three-dimensional nickel foam,which is then electrochemically seeded with gold nanoparticles(Au NPs).The meticulous design of a low-barrier Ohmic contact between mesoporous Ni O and Au NPs facilitates target-mediated nanochannel-confined electron transfer within mesoporous Ni O.As a result,the heavy metals Pb2+(0.020 mg.L^(-1)detection limit;2.0–16.0 mg.L^(-1)detection range)and Cu^(2+)(0.013 mg.L^(-1)detection limit;0.4–12.8 mg.L^(-1)detection range)can be detected simultaneously with high precision.Furthermore,other heavy metal ions and common interfering ions found in groundwater showed negligible impacts on the electrode’s performance,and the recovery rate of groundwater samples varied between 96.3%±2.1%and 109.4%±0.6%.The compactness,flexible shape,low power consumption,and ability to remotely operate our electrode pave the way for onsite detection of heavy metals in groundwater,thereby demonstrating the potential to revolutionize the field of environmental monitoring.
文摘Heavy ion beams with high linear energy transfer exhibit more beneifcial physical and biological performance than conventional X-rays, thus improving the potential of this type of radiotherapy in the treatment of cancer. However, these two radiotherapy modalities both cause inevitable brain injury. The objective of this study was to evaluate the effects of heavy ion and X-ray irra-diation on the cytoskeleton and cytomechanical properties of rat cortical neurons, as well as to determine the potential mechanism of neuronal injury after irradiation. Cortical neurons from 30 new-born mice were irradiated with heavy ion beams at a single dose of 2 Gy and X-rays at a single dose of 4 Gy;subsequent evaluation of their effects were carried out at 24 hours after irradiation. An immunolfuorescence assay showed that after irradiation with both the heavy ion beam and X-rays, the number of primary neurons was signiifcantly decreased, and there was ev-idence of apoptosis. Radiation-induced neuronal injury was more apparent after X-irradiation. Under atomic force microscopy, the neuronal membrane appeared rough and neuronal rigidity had increased. These cell changes were more apparent following exposure to X-rays. Our ifnd-ings indicated that damage caused by heavy ion and X-ray irradiation resulted in the structural distortion and rearrangement of the cytoskeleton, and affected the cytomechanical properties of the cortical neurons. Moreover, this radiation injury to normal neurons was much severer after irradiation with X-rays than after heavy ion beam irradiation.
基金supported by the National Natural Science Foundation of China under Grant No.40575015
文摘Based on the National Oceanic and Atmospheric Administration (NOAA) daily satellite dataset of global outgoing longwave radiation (OLR) for the period of 1974-2004 and the NCEP-NCAR reanalysis for 1971- 2004, the linkage between persistent heavy rainfall (PHR) events in the vicinity of the Yangtze River valley and global OLR leading up to those events (with 1- to 3O-day lag) was investigated. The results reveal that there is a significant connection between the initiation of PHR events over the study area and anomalous convective activity over the tropical Indian Ocean, maritime continent, and tropical western Pacific Ocean. During the 30-day period prior to the onset of PHR events, the major significantly anomalous convective centers have an apparent dipole structure, always with enhanced convection in the west and suppressed convection in the east. This dipole structure continuously shifts eastward with time during the 30-day lead period. The influence of the anomalous convective activity over the tropical oceans on the initiation of PHR events over the study area is achieved via an interaction between tropical and extratropical latitudes. More specifically, anomalous convective activity weakens the Walker circulation cell over the tropical Indian Ocean first. This is followed by a weakening of the Indian summer monsoon background state and the excitation and dispersion of Rossby wave activity over Eurasia. Finally, a major modulation of the large scale background circulation occurs. As a result, the condition of a phase-lock among major large scale circulation features favoring PHR events is established over the study area.
基金supported by the National Natural Science Foundation of China(Grant No.61204112)
文摘AlGaN/GaN high electron mobility transistors (HEMTs) were irradiated by 256 MeV 127I ions with a fluence up to 1 × 10^10 ions/cm2 at the HI-13 heavy ion accelerator of the China Institute of Atomic Energy. Both the drain current ld and the gate current Ig increased in off-state during irradiation. Post-irradiation measurement results show that the device output, transfer, and gate characteristics changed significantly. The saturation drain current, reverse gate leakage current, and the gate-lag all increased dramatically. By photo emission microscopy, electroluminescence hot spots were found in the gate area. All of the parameters were retested after one day and after one week, and no obvious annealing effect was observed under a temperature of 300 K. Further analysis demonstrates that swift heavy ions produced latent tracks along the ion trajectories through the hetero-junction. Radiation-induced defects in the latent tracks decreased the charges in the two-dimensional electron gas and reduced the carrier mobility, degrading device performance.
基金supported by the Fostering Foundation for the Excellent Ph D.Dissertation of Gansu Agricultural University(2013002)the National High Technology Research and Development Program of China(2013AA102505)the Ministry of Science and Technology National Key R&D project(2016YFC0904600)
文摘In the present study, we used a proteomics approach based on a two-dimensional electrophoresis (2-DE) reference map to investigate protein expression in the ovarian tissues of pubertal Swiss-Webster mice subjected to carbon ion radiation (CIR). Among the identified proteins, ubiquitin carboxy-terminal hydrolase L1 (UCH-L1) is associated with the cell cycle[1] and that it influences proliferation in ovarian tissues. We analyzed the expression of UCH-L1 and the proliferation marker proliferation cell nuclear antigen (PCNA) following CIR using immunoblotting and immunofluorescence. The proteomics and biochemical results provide insight into the underlying mechanisms of CIR toxicity in ovarian tissues.
基金supported by the National Natural Science Foundation of China(Grant No.60976013)
文摘The degradations in NPN silicon-germanium (SiGe) heterojunction bipolar transistors (HBTs) were fully studied in this work, by means of 25-MeV Si, 10-MeV C1, 20-MeV Br, and 10-MeV Br ion irradiation, respectively. Electrical parameters such as the base current (IB), current gain (β), neutral base recombination (NBR), and Early voltage (VA) were investigated and used to evaluate the tolerance to heavy ion irradiation. Experimental results demonstrate that device degradations are indeed radiation-source-dependent, and the larger the ion nuclear energy loss is, the more the displacement damages are, and thereby the more serious the performance degradation is. The maximum degradation was observed in the transistors irradiated by 10-MeV Br. For 20-MeV and 10-MeV Br ion irradiation, an unexpected degradation in Ic was observed and Early voltage decreased with increasing ion fluence, and NBR appeared to slow down at high ion fluence. The degradations in SiGe HBTs were mainly attributed to the displacement damages created by heavy ion irradiation in the transistors. The underlying physical mechanisms are analyzed and investigated in detail.
基金financial support from the National Natural Science Foundation of China (21838004)Priority Academic Program Development of Jiangsu Higher Education Institutions (PPZY2015A044)Top-notch Academic Programs Project of Jiangsu Higher Education Institution (TAPP)。
文摘Struvite(MAP)crystallization technology is widely used to treat ammonia nitrogen in waste effluents of its simple operation and good removal efficiency.However,the presence of heavy metal ions in the waste effluents causes problems such as slow crystallization rate and small crystal size,limiting the recovery rate and economic value of the MAP.The present study was conducted to investigate the effects of concentrations of three heavy metal ions(Cu^(2+),Zn^(2+),and Pb^(2+))on the crystal morphology,crystal size,average growth rate,and crystallization kinetics of MAP.A relationship was established between the kinetic rate constant Ktcalculated by the chemical gradient model and the concentrations of heavy metal ions.The results showed that low concentrations of heavy metal ions in the solution created pits on the MAP surface,and high level of heavy metal ions generated flocs on the MAP surface,which were composed of metal hydroxides,thus inhibiting crystal growth.The crystal size,average growth rate,MAP crystallization rate,and kinetic rate constant Ktdecreased with the increase in heavy metal ion concentration.Moreover,the Ktdemonstrated a linear relationship with the heavy metal concentration ln(C/C~*),which provided a reference for the optimization of the MAP crystallization process in the presence of heavy metal ions.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12035019,12105339,and62174180)the Opening Special Foundation of State Key Laboratory of Intense Pulsed Radiation Simulation and Effect,China(Grant No.SKLIPR2113)。
文摘The variations of single event transient(SET)pulse width of high-LET heavy ion irradiation in 16-nm-thick bulk silicon fin field-effect transistor(Fin FET)inverter chains with different driven strengths are measured at different temperatures.Three-dimensional(3D)technology computer-aided design simulations are carried out to study the SET pulse width and saturation current varying with temperature.Experimental and simulation results indicate that the increase in temperature will enhance the parasitic bipolar effect of bulk Fin FET technology,resulting in the increase of SET pulse width.On the other hand,the increase of inverter driven strength will change the layout topology,which has a complex influence on the SET temperature effects of Fin FET inverter chains.The experimental and simulation results show that the device with the strongest driven strength has the least dependence on temperature.
基金Funded by the National Natural Science Foundation of China(No.51272192)National "Twelfth Five-Year" Plan for Science&Technology Support(No.2011BAJ04B05-02)
文摘A new method to prepare radiation shielding functional aggregate is described, and an appropriate mix ratio and a reasonable calcinated condition was engaged. The y-ray shielding capability of both the new functional aggregates and some other nature aggregates had been measured. The linear attenuation coefficients (μ, cm-1) of these aggregates had been calculated at photon energies from 1 keV to 10GeV using XCOM program, and measured at the photon energies of 662 keV, showing good agreement between experimental and calculated results. The results show that the y-ray shielding capacity of the new functional aggregates has been improved substantially compared with basalt, almost equal to serpentine and high-titanium slag, and up to 80% to barite.
基金Project supported by the National Natural Science Foundation of China (Grants No. 60625403,60836004,60925015 and 90207004)the Major State Basic Research Development Program of China (973 Program) (Grant No. 2006CB302701)
文摘This paper mainly reports the permanent impact of displacement damage induced by heavy-ion strikes on the deepsubmicron MOSFETs. Upon the heavy ion track through the device, it can lead to displacement damage, including the vacancies and the interstitials. As the featured size of device scales down, the damage can change the dopant distribution in the channel and source/drain regions through the generation of radiation-induced defects and thus have significant impacts on their electrical characteristics. The measured results show that the radiation-induced damage can cause DC characteristics degradations including the threshold voltage, subthreshold swing, saturation drain current, transconductanee, etc. The radiation-induced displacement damage may become the dominant issue while it was the secondary concern for the traditional devices after the heavy ion irradiation. The samples are also irradiated by Co- 60 gamma ray for comparison with the heavy ion irradiation results. Corresponding explanations and analysis are discussed.
基金supported by National Natural Science Foundation of China(Nos.11965019,42004131 and 42065005)。
文摘A magnetized cylindrical target composed of a gold tube filled with deuterium-tritium fuel plasma at low density is studied numerically in the present paper.A shock wave is produced when a heavy ion beam heats the gold along the direction of the magnetic field.The density peak of the shock wave increases with the increase in time and it propagates in the-r direction in the cylindrical tube.It seems that this wave is the supermagnetosonic wave.It is found that the Mach number M is between 6.96 and 19.19.The density peak of the shock wave increases as the intensity of the heavy ion beam increases.Furthermore,the density peak of the shock wave increases as the external magnetic field increases.
基金the National Natural Science Foundation of China(Grant Nos.12035019,11690041,and 12075290)China National Postdoctoral Program for Innovative Talents(Grant No.BX20200340)+1 种基金China Postdoctoral Science Foundation(Grant No.2020M673539)CAS"Light of West China"Program,and the Youth Innovation Promotion Association of Chinese Academy of Sciences(CAS)(Grant No.2020412).
文摘The electrical characteristics and microstructures ofβ-Ga_(2)O_(3) Schottky barrier diode(SBD)devices irradiated with swift heavy ions(2096 MeV Ta ions)have been studied.It was found thatβ-Ga_(2)O_(3) SBD devices showed the reliability degradation after irradiation,including turn-on voltage Von,on-resistance Ron,ideality factor n,and the reverse leakage current density Jr.In addition,the carrier concentration of the drift layer was decreased significantly and the calculated carrier removal rates were 5×10^(6)-1.3×10^(7)cm^(-1).Latent tracks induced by swift heavy ions were observed visually in the wholeβ-Ga2O3 matrix.Furthermore,crystal structure of tracks was amorphized completely.The latent tracks induced by Ta ions bombardments were found to be the reason for the decrease in carrier mobility and carrier concentration.Eventually,these defects caused the degradation of electrical characteristics of the devices.In terms of the carrier removal rates,theβ-Ga_(2)O_(3) SBD devices were more sensitive to swift heavy ions irradiation than SiC and GaN devices.