Researches on the hydrothermal treatment of municipal solid waste incineration(MSWI)fly ash were conducted to eliminate dioxins and stabilize heavy metals.In order to enhance decomposing polychlorinated dibenzodioxins...Researches on the hydrothermal treatment of municipal solid waste incineration(MSWI)fly ash were conducted to eliminate dioxins and stabilize heavy metals.In order to enhance decomposing polychlorinated dibenzodioxins(PCDDs)and polychlorinated dibenzo-furans(PCDFs)during hydrothermal process,a strong reductant carbohydrazide(CHZ)is introduced.A hydrothermal reactor was set up by mixing raw MSWI fly ash or the pre-treated fly ash with water and then heated to a pre-set temperature;CHZ was spiked into solution according to specially defined dosage.Experimental results showed that under the temperatures of 518 K and 533 K,the decomposition rates of PCDDs/PCDFs were over 80%and 90%,respectively,by total concentration.However,their toxic equivalent(TEQ)decreased only slightly or even increased due to the rising in concentration of congeners 2,3,7,8-TCDD/TCDF,which might be resulted from the highly chlorinated congeners losing their chlorine atoms and being degraded during the hydrothermal process.Better results of TEQ reduction were also obtained under the higher tested temperature of 533 K and reactor with addition of 0.1%wt CHZ was corresponded to the best results.Good stabilization of heavy metals was also obtained in the same hydrothermal process especially when ferrous sulphate was added as auxiliary agent.展开更多
The fly ash from two municipal solid waste incineration plants in Shanghai was treated by the self-developed organic composite chelating agent. The results indicated that the stabilization effect of Pb in the fly ash ...The fly ash from two municipal solid waste incineration plants in Shanghai was treated by the self-developed organic composite chelating agent. The results indicated that the stabilization effect of Pb in the fly ash by the composite chelating agent was the best,and the proportions of its easily leaching form in the two kinds of fly ash decreased from 29. 60% and 27. 49% to 3. 05% and 0. 29% respectively. The leaching toxicity of stabilized fly ash was lower than the limits of Standard for Pollution Control on the Landfill Site of Municipal Solid Waste( GB 16889- 2008),so it can be landfilled separately in the landfill site of municipal solid waste.展开更多
In situ and simultaneous remediation of a variety of pollutants in sediments remains a challenge.In this study,we report that the combination of electrocoagulation(EC)and electrooxidation(EO)is efficient in the immobi...In situ and simultaneous remediation of a variety of pollutants in sediments remains a challenge.In this study,we report that the combination of electrocoagulation(EC)and electrooxidation(EO)is efficient in the immobilization of phosphorus and heavymetals and in the oxidation of ammonium and toxic organicmatter.The integratedmixed metal oxide(MMO)/Fe anode system allowed the facile removal of ammonium and phosphorus in the overlying water(99% of 10 mg/L NH_(4)^(+)-N and 95% of 10 mg/L P disappeared in 15 and 30 min,respectively).Compared with the controls of the single Fe anode and single MMO anode systems,the dual MMO/Fe anode system significantly improved the removal of phenanthrene and promoted the transition of Pb and Cu from the mobile species to the immobile species.The concentrations of Pb and Cu in the toxicity characteristic leaching procedure extracts were reduced by 99%and 97% after an 8 hr operation.Further tests with four real polluted samples indicated that substantial proportions of acid-soluble fraction Pb and Cu were reduced(30%-31% for Pb and 16%–23% for Cu),and the amounts of total organic carbon and NH_(4)^(+)-N decreased by 56%–71% and 32%–63%,respectively.It was proposed that the in situ electrogenerated Fe(II)at the Fe anode and the active oxygen/chlorine species at the MMO anode are conducive to outstanding performance in the co-treatment of multiple pollutants.The results suggest that the EC/EO method is a powerful technology for the in situ remediation of sediments contaminated with different pollutants.展开更多
Heavy metal containing pickling sludge(PS) is one of the by-products of the stainless-steel-making industry,which has been considered hazardous due to contained chromium and nickel.Traditional methods of PS disposin...Heavy metal containing pickling sludge(PS) is one of the by-products of the stainless-steel-making industry,which has been considered hazardous due to contained chromium and nickel.Traditional methods of PS disposing are landfill and cement solidification.This research is aimed at disposing PS by solidification/stabilization and reusing it as a nucleation agent of glass–ceramics.The crystallization behavior and the properties of a glass in the CaO–MgO–SiO2–Al2O3 system were studied by considering PS as the nucleation agent.Experimental results confirm that introducing 14 wt% PS as the nucleation agent of glass–ceramics can decrease crystallization temperature by 110.8 °C,refine the grain size by forming isometric crystals with size of 2 lm,enhance Vickers hardness by 2690 MPa and decrease water absorption from(1.21 ± 0.10) wt% to(0.04 ± 0.01) wt%.Therefore,it is reasonable to conclude that PS can be utilized as a nucleation agent to improve the crystallization and mechanical properties of the glass–ceramics.The testing results of US EPA toxicity characteristic leaching procedure(TCLP)confirm the safety of this reusing method.展开更多
基金the National High-Tech Research and Development(863)Program of China(Grant No.2008AA06Z340)the National Natural Science Foundation of China(Grant No.50708068).
文摘Researches on the hydrothermal treatment of municipal solid waste incineration(MSWI)fly ash were conducted to eliminate dioxins and stabilize heavy metals.In order to enhance decomposing polychlorinated dibenzodioxins(PCDDs)and polychlorinated dibenzo-furans(PCDFs)during hydrothermal process,a strong reductant carbohydrazide(CHZ)is introduced.A hydrothermal reactor was set up by mixing raw MSWI fly ash or the pre-treated fly ash with water and then heated to a pre-set temperature;CHZ was spiked into solution according to specially defined dosage.Experimental results showed that under the temperatures of 518 K and 533 K,the decomposition rates of PCDDs/PCDFs were over 80%and 90%,respectively,by total concentration.However,their toxic equivalent(TEQ)decreased only slightly or even increased due to the rising in concentration of congeners 2,3,7,8-TCDD/TCDF,which might be resulted from the highly chlorinated congeners losing their chlorine atoms and being degraded during the hydrothermal process.Better results of TEQ reduction were also obtained under the higher tested temperature of 533 K and reactor with addition of 0.1%wt CHZ was corresponded to the best results.Good stabilization of heavy metals was also obtained in the same hydrothermal process especially when ferrous sulphate was added as auxiliary agent.
基金Supported by the Project of Shangai State-owned Assets Supervision and Administration Commission(2013019)Project of Shanghai Science and Technology Commission(13231201901)+1 种基金Innovation Foundation of Shanghai Science and Technology Commission(11231200200)Special Project for Zhangjiang High-tech Park in Shanghai(201505-HP-C104-005)
文摘The fly ash from two municipal solid waste incineration plants in Shanghai was treated by the self-developed organic composite chelating agent. The results indicated that the stabilization effect of Pb in the fly ash by the composite chelating agent was the best,and the proportions of its easily leaching form in the two kinds of fly ash decreased from 29. 60% and 27. 49% to 3. 05% and 0. 29% respectively. The leaching toxicity of stabilized fly ash was lower than the limits of Standard for Pollution Control on the Landfill Site of Municipal Solid Waste( GB 16889- 2008),so it can be landfilled separately in the landfill site of municipal solid waste.
基金supported by the National Key Research and Development Program of China (Nos. 2020YFC1808502 and2018YFC1802804)the Open Project Program of the Key Laboratory of Environmental Protection & Safety of Communication Foundation Engineering,China Communications Construction Co.,Ltd
文摘In situ and simultaneous remediation of a variety of pollutants in sediments remains a challenge.In this study,we report that the combination of electrocoagulation(EC)and electrooxidation(EO)is efficient in the immobilization of phosphorus and heavymetals and in the oxidation of ammonium and toxic organicmatter.The integratedmixed metal oxide(MMO)/Fe anode system allowed the facile removal of ammonium and phosphorus in the overlying water(99% of 10 mg/L NH_(4)^(+)-N and 95% of 10 mg/L P disappeared in 15 and 30 min,respectively).Compared with the controls of the single Fe anode and single MMO anode systems,the dual MMO/Fe anode system significantly improved the removal of phenanthrene and promoted the transition of Pb and Cu from the mobile species to the immobile species.The concentrations of Pb and Cu in the toxicity characteristic leaching procedure extracts were reduced by 99%and 97% after an 8 hr operation.Further tests with four real polluted samples indicated that substantial proportions of acid-soluble fraction Pb and Cu were reduced(30%-31% for Pb and 16%–23% for Cu),and the amounts of total organic carbon and NH_(4)^(+)-N decreased by 56%–71% and 32%–63%,respectively.It was proposed that the in situ electrogenerated Fe(II)at the Fe anode and the active oxygen/chlorine species at the MMO anode are conducive to outstanding performance in the co-treatment of multiple pollutants.The results suggest that the EC/EO method is a powerful technology for the in situ remediation of sediments contaminated with different pollutants.
基金financially supported by the National Natural Science Foundation of China (Nos.51502014,51472030 and U1360202)the National Key Project of the Scientific and Technical Support Program of China (No.2012BAC02B01)+2 种基金the National Hi-Tech R&D Program of China (No.2012AA063202)the Fundamental Research Funds for the Central Universities (No.FRF-TP-15-050A2)the China Postdoctoral Science Foundation Funded Project (No.2014M560885)
文摘Heavy metal containing pickling sludge(PS) is one of the by-products of the stainless-steel-making industry,which has been considered hazardous due to contained chromium and nickel.Traditional methods of PS disposing are landfill and cement solidification.This research is aimed at disposing PS by solidification/stabilization and reusing it as a nucleation agent of glass–ceramics.The crystallization behavior and the properties of a glass in the CaO–MgO–SiO2–Al2O3 system were studied by considering PS as the nucleation agent.Experimental results confirm that introducing 14 wt% PS as the nucleation agent of glass–ceramics can decrease crystallization temperature by 110.8 °C,refine the grain size by forming isometric crystals with size of 2 lm,enhance Vickers hardness by 2690 MPa and decrease water absorption from(1.21 ± 0.10) wt% to(0.04 ± 0.01) wt%.Therefore,it is reasonable to conclude that PS can be utilized as a nucleation agent to improve the crystallization and mechanical properties of the glass–ceramics.The testing results of US EPA toxicity characteristic leaching procedure(TCLP)confirm the safety of this reusing method.