Spherical flower-like Mg(OH)_(2) was fabricated from MgSO_(4) effluent and its adsorption performance for heavy metal ions was evaluated.The appropriate fabrication conditions are as follows:Mg^(2+)/NH4OH molar ratio ...Spherical flower-like Mg(OH)_(2) was fabricated from MgSO_(4) effluent and its adsorption performance for heavy metal ions was evaluated.The appropriate fabrication conditions are as follows:Mg^(2+)/NH4OH molar ratio of 1:0.5,temperature of 120°C and time of 1 h at Mg^(2+)concentration of 2 mol/L.Spherical flower-like Mg(OH)_(2) composed of ultra-thin sheets exhibits an excellent adsorption ability for Ni^(2+),Cu^(2+),Zn^(2+),Pb^(2+),Fe^(3+)and Co^(2+),and the adsorption reaches the equilibrium in 6 min.The maximum adsorption capacities of the studied heavy metal ions onto Mg(OH)_(2) at 20°C are 58.55,85.84,44.94,485.44,625.00 and 27.86 mg/g,respectively.The adsorption is well fitted by the Langmuir model,indicating that the adsorption is monolayer.The adsorption kinetics follows the pseudo-second-order model.Chemisorption is the operative mechanism.Spherical flower-like Mg(OH)_(2) is a qualified candidate for heavy metal ions removal.展开更多
Extraction of heavy metal ions from solid matrix by means of an incorporation of chelating agents with supercritical carbon dioxide(scCO2) was investigated experimentally. Four commercially available chelating agent...Extraction of heavy metal ions from solid matrix by means of an incorporation of chelating agents with supercritical carbon dioxide(scCO2) was investigated experimentally. Four commercially available chelating agents, diethylammonium diethyldithiocarbamate(Et2NH2DDC), trifluoroacetylacetone(TFA), hexafluoroacetylacetone(HFA) and thenoyltrifluoroacetone(TTA) were tested. The extraction experiments were conducted at 50 °C and 1.39×107― 2.80×107 Pa. According to the experimental results, for the extraction of Cu2+, all the chelating agents investigated here are effective. For other metal ions, such as Pb2+, Ni2+ and Cd2+, Et2NH2DDC exhibited a better extraction result, while other chelating agents were less effective. This investigation is expected to provide a tentative evaluation on the scCO2-based metal extraction from solid media.展开更多
Recently, Hsieh and Horng [1] published the paper entitled as above. In section 3 results and discussion, the authors mentioned the first and the second order kinetic models without any quotations. In fact these two k...Recently, Hsieh and Horng [1] published the paper entitled as above. In section 3 results and discussion, the authors mentioned the first and the second order kinetic models without any quotations. In fact these two kinetic models have been published [2-5]. In order to distinguish a kinetics model based on the ad- sorption capacity of a solid from the one based on the concentration of a solution, Lagergren's first-order rate equation has been called pseudo-first-order [6-7]. The Lagergren's equation has been widely cited, but there are far more mistakes made in the quotation and in the reference section of papers, including the title, the author's name, journal title, year of publishing, volume, and page number [3]. In addition, the second order kinetic expression for the adsorption systems of divalent metal ions using sphagnum moss peat has been reported by Ho [8].展开更多
To maximize the potential of monolayer molybdenum disulfide(MoS2)sheet in the disposal of heavy metal ions in wastewater,we compared the adsorption of several common heavy metal ions(including Cr^(3+),Ni^(2+),Cu^(2+),...To maximize the potential of monolayer molybdenum disulfide(MoS2)sheet in the disposal of heavy metal ions in wastewater,we compared the adsorption of several common heavy metal ions(including Cr^(3+),Ni^(2+),Cu^(2+),Zn^(2+),Cd^(2+),Hg^(2+),and Pb^(2+))in wastewater on the monolayer MoS2 sheet through first-principles calculation.Our simulation results show that the monolayer MoS2 sheet is a potential heavy metal adsorption material because of the attractive interaction between them.The most negative adsorption energy determines that the TMo site is the most stable adsorption site for the heavy metal ions.The attractive interaction is considered as chemical adsorption,and it is closely related to charge transfer.The orbital hybridization between S p and heavy metal ions p and d states electrons contributes to the adsorption,except the orbital hybridization between S p and Pb p states electrons contributes to the Pb^(2+) adsorption.All the results show that the monolayer MoS2 sheet is most suitable for removing Ni^(2+) and Cr^(3+) ions from wastewater,followed by Cu^(2+) and Pb^(2+).For the ions Cd^(2+),Zn^(2+),and Hg^(2+),its adsorption strength remains to be improved.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 51774070 and 52004165)the Science and Technology Project of Yunnan Province, China (No. 202101AS070029)
文摘Spherical flower-like Mg(OH)_(2) was fabricated from MgSO_(4) effluent and its adsorption performance for heavy metal ions was evaluated.The appropriate fabrication conditions are as follows:Mg^(2+)/NH4OH molar ratio of 1:0.5,temperature of 120°C and time of 1 h at Mg^(2+)concentration of 2 mol/L.Spherical flower-like Mg(OH)_(2) composed of ultra-thin sheets exhibits an excellent adsorption ability for Ni^(2+),Cu^(2+),Zn^(2+),Pb^(2+),Fe^(3+)and Co^(2+),and the adsorption reaches the equilibrium in 6 min.The maximum adsorption capacities of the studied heavy metal ions onto Mg(OH)_(2) at 20°C are 58.55,85.84,44.94,485.44,625.00 and 27.86 mg/g,respectively.The adsorption is well fitted by the Langmuir model,indicating that the adsorption is monolayer.The adsorption kinetics follows the pseudo-second-order model.Chemisorption is the operative mechanism.Spherical flower-like Mg(OH)_(2) is a qualified candidate for heavy metal ions removal.
基金Supported by the National Natural Science Foundation of China(Nos.20776066, 20976079)
文摘Extraction of heavy metal ions from solid matrix by means of an incorporation of chelating agents with supercritical carbon dioxide(scCO2) was investigated experimentally. Four commercially available chelating agents, diethylammonium diethyldithiocarbamate(Et2NH2DDC), trifluoroacetylacetone(TFA), hexafluoroacetylacetone(HFA) and thenoyltrifluoroacetone(TTA) were tested. The extraction experiments were conducted at 50 °C and 1.39×107― 2.80×107 Pa. According to the experimental results, for the extraction of Cu2+, all the chelating agents investigated here are effective. For other metal ions, such as Pb2+, Ni2+ and Cd2+, Et2NH2DDC exhibited a better extraction result, while other chelating agents were less effective. This investigation is expected to provide a tentative evaluation on the scCO2-based metal extraction from solid media.
文摘Recently, Hsieh and Horng [1] published the paper entitled as above. In section 3 results and discussion, the authors mentioned the first and the second order kinetic models without any quotations. In fact these two kinetic models have been published [2-5]. In order to distinguish a kinetics model based on the ad- sorption capacity of a solid from the one based on the concentration of a solution, Lagergren's first-order rate equation has been called pseudo-first-order [6-7]. The Lagergren's equation has been widely cited, but there are far more mistakes made in the quotation and in the reference section of papers, including the title, the author's name, journal title, year of publishing, volume, and page number [3]. In addition, the second order kinetic expression for the adsorption systems of divalent metal ions using sphagnum moss peat has been reported by Ho [8].
基金This work was supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U1967212)the National Science and Technology Major Project of China(Grant No.2019XS06004009)the Fundamental Research Funds for the Central Universities(Grant No.2018ZD10).
文摘To maximize the potential of monolayer molybdenum disulfide(MoS2)sheet in the disposal of heavy metal ions in wastewater,we compared the adsorption of several common heavy metal ions(including Cr^(3+),Ni^(2+),Cu^(2+),Zn^(2+),Cd^(2+),Hg^(2+),and Pb^(2+))in wastewater on the monolayer MoS2 sheet through first-principles calculation.Our simulation results show that the monolayer MoS2 sheet is a potential heavy metal adsorption material because of the attractive interaction between them.The most negative adsorption energy determines that the TMo site is the most stable adsorption site for the heavy metal ions.The attractive interaction is considered as chemical adsorption,and it is closely related to charge transfer.The orbital hybridization between S p and heavy metal ions p and d states electrons contributes to the adsorption,except the orbital hybridization between S p and Pb p states electrons contributes to the Pb^(2+) adsorption.All the results show that the monolayer MoS2 sheet is most suitable for removing Ni^(2+) and Cr^(3+) ions from wastewater,followed by Cu^(2+) and Pb^(2+).For the ions Cd^(2+),Zn^(2+),and Hg^(2+),its adsorption strength remains to be improved.