Heavy metal ions in shellfish products are harmful to human health,and their removal with low nutrient loss remains challenging.Herein,a new type of mesoporous silica(SBA15),modified internally with ammonium pyrrolidi...Heavy metal ions in shellfish products are harmful to human health,and their removal with low nutrient loss remains challenging.Herein,a new type of mesoporous silica(SBA15),modified internally with ammonium pyrrolidine dithiocarbamate(APDC)and externally with alkyl-diol groups,which was named as Diol-APDC-SBA15,was successfully developed and characterized by powder X-ray diffraction patterns,nitrogen adsorption,and Fourier transform infrared spectroscopy.The solutions with lead,chromium,cadmium,and copper were used to investigate the adsorption capacity of Diol-APDC-SBA15.Diol-APDC-SBA15 was adopted to remove heavy metals from cooking liquids of clams(Ruditapes philippinarum),hydrolysate liquids of oysters(Ostrea gigas Thunberg),and polysaccharide solution from the cooking liquid of R.philippinarum.The efficiencies of removing heavy metal ions and the loss rates of proteins and polysaccharides were examined.The results showed that the adsorption capacities of Diol-APDCSBA15 for Pb,Cr,Cd,and Cu in standard heavy-metal solutions were 161.4,166.1,29.6,and 60.2mgg^(−1),respectively.The removal efficiency of Diol-APDC-SBA15 for Pb in the three shellfish processing liquids ranged from 60.5%to 99.6%.The Cr removal efficiency was above 99.9%in the oyster hydrolysate liquid.Meanwhile,the percentages of polysaccharide loss were 5.5%and 3.7%in the cooking liquid of clam and polysaccharide solution,respectively,and the protein loss was 1.2%in the oyster hydrolysate liquid.Therefore,the Diol-APDC-SBA15 material exhibits a great potential application in the removal of heavy metals from shellfish processing liquids with low losses of proteins and polysaccharides.展开更多
Although there are arguments on the mechanisms of specific adsorptioh of heavy-metal ion (HMI) on the surface of Fe and A1 oxides, the following methodological definition of the specific adsorption is commonly accepte...Although there are arguments on the mechanisms of specific adsorptioh of heavy-metal ion (HMI) on the surface of Fe and A1 oxides, the following methodological definition of the specific adsorption is commonly accepted: the specific adsorptions are those trace HMIs adsorbed by oxides in the presence of alkaline or alkaline-earth metal ions (AAEMI)展开更多
Interfacial solar steam generation(ISSG),involving the use of solar energy to evaporate water at the water-to-vapor interface,has presented prospects for the desalination and purification of water due to high energy c...Interfacial solar steam generation(ISSG),involving the use of solar energy to evaporate water at the water-to-vapor interface,has presented prospects for the desalination and purification of water due to high energy conversion efficiency and low-cost freshwater generation.Herein,inspired by the aligned nanostructure of plants for efficiently transporting nutrient ions,we optimally design and construct a biomass-based Janus architecture evaporator with an oriented nanostructure for ISSG,using the ice template method,followed by biomimetic mineralization with the resource-abundant and low-cost biomass of the carboxymethyl cellulose and sodium alginate as the raw materials.Taking advantage of the oriented nanostructure allowing efficient transportation of water and coordination capacity of sodium alginate for effective enrichment of heavy-metal ions,the biomass-based Janus architecture shows much lower thermal conductivity and an ultrahigh steam regeneration rate of 2.3 kg m−2 h−1,considerably surpassing those of previously reported oriented biomass-based evaporators.Moreover,the biomass precursor materials are used for this Janus evaporator,guaranteeing minimum impact on the water ecology and environment during the regeneration process of clean drinking water.This study presents an efficient,green,and sustainable pathway for ISSG to effectively achieve heavy-metal-free drinking water.展开更多
The aim of the study is to comparatively assess the concentrations of lead, zinc and iron in Rivers Ase, Warri and Ethiope, in Nigeria. Monthly water samples were collected from six randomly selected sites along the r...The aim of the study is to comparatively assess the concentrations of lead, zinc and iron in Rivers Ase, Warri and Ethiope, in Nigeria. Monthly water samples were collected from six randomly selected sites along the rivers course. 72 water samples were collected from each river at 0 - 15 cm depths. Samples were analysed based on the standard methods recommended by the WHO for testing lead, zinc and iron. The assessment of the water quality was done using the Water Quality Index (WQI) of the Canadian Council of Ministers of the Environment (CCME-WQI). While hypotheses were tested using ANOVA. Findings indicated that CCME-WQI values were 47.3, 66.52 and 78.7. This meant that the water quality of River Ase is impaired and departed from desirable levels, while that of Warri and Ethiope were considered to occasionally be impaired and depart from desirable levels. The ANOVA model showed that there is a significant variation in heavy metal load in the selected rivers at P < 0.05. River water was put to domestic uses such as drinking (20.5%) preparing food (17.8%), bathing (19.8%), washing clothes and dishes (21.3%), brushing teeth (13.3%), and catering for domestic animals (7.5%). Poverty (49.5%) was the major reason for the use of river water for domestic purposes. The locals highlighted that they usually suffer from cholera (26.8%), diarrhoea (25.8%), dysentery (24%) and typhoid (23.5%) as a result of using the river water. The study recommended routine monitoring of anthropogenic and geologic activities, testing of the water regularly amongst others.展开更多
Current globalization trends and important breakthroughs globally need a complete study of heavy metal contamination, its causes, its impacts on human and environmental health, and different remediation strategies. He...Current globalization trends and important breakthroughs globally need a complete study of heavy metal contamination, its causes, its impacts on human and environmental health, and different remediation strategies. Heavy metal pollution is mostly produced by urbanization and industry, which threatens ecosystems and human health. Herein, we discuss a sustainable environmental restoration strategy employing phytoremediation for heavy metal pollution, the carcinogenic, mutagenic, and cytotoxic effects of heavy metals such as cadmium, copper, mercury, selenium, zinc, arsenic, chromium, lead, nickel, and silver, which may be fatal. Phytoremediation, which was prioritized, uses plants to remove, accumulate, and depollute pollutants. This eco-friendly method may safely collect, accumulate, and detoxify toxins using plants, making it popular. This study covers phytostabilization, phytodegradation, rhizodegradation, phytoextraction, phytovolatilization, and rhizofiltration. A phytoremediation process’s efficiency in varied environmental circumstances depends on these components’ complex interplay. This paper also introduces developing phytoremediation approaches including microbe-assisted, chemical-assisted, and organic or bio-char use. These advancements attempt to overcome conventional phytoremediation’s limitations, such as limited suitable plant species, location problems, and sluggish remediation. Current research includes machine learning techniques and computer modeling, biostimulation, genetic engineering, bioaugmentation, and hybrid remediation. These front-line solutions show that phytoremediation research is developing towards transdisciplinary efficiency enhancement. We acknowledge phytoremediation’s promise but also its drawbacks, such as site-specific variables, biomass buildup, and sluggish remediation, as well as ongoing research to address them. In conclusion, heavy metal pollution threatens the ecology and public health and must be reduced. Phytoremediation treats heavy metal pollution in different ways. Over time, phytoremediation systems have developed unique ways that improve efficiency. Despite difficulties like site-specificity, sluggish remediation, and biomass buildup potential, phytoremediation is still a vital tool for environmental sustainability.展开更多
Soil contaminated with typical heavy metals (Pb,Cd,Cu,and Zn) was remedied by using the polymeric aluminum salt coagulants including polyaluminum chloride (PAC) and polyaluminum sulfate (PAS).The remediation efficienc...Soil contaminated with typical heavy metals (Pb,Cd,Cu,and Zn) was remedied by using the polymeric aluminum salt coagulants including polyaluminum chloride (PAC) and polyaluminum sulfate (PAS).The remediation efficiencies are influenced by reaction time,water amount,and dosage of remediation agent.The optimal remediation conditions are as follows:6 h of reaction time,1 kg/kg of water addition amount,and 0.25 kg/kg of remediation agent dosage.After PAC addition,the remediation efficiencies of diethylenetriamine-pentaacetic acid (DTPA)-extractable Pb,Cd,Cu,and Zn reach 88.3%,85.1%,85.4%,and 73.7%,respectively;and those for PAS are 89.7%,88.7%,83.5%,and 72.6%,respectively.The main remediation mechanism of the polymeric aluminum salt may contribute to the ionization and hydrolysis of PAC and PAS.H + released from ionization of polymeric aluminum salt can cause the leaching of heavy metals,while the multinuclear complex produced from hydrolysis may result in the immobilization of heavy metals.For PAC,the immobilization of heavy metals is the main remediation process.For PAS,both leaching and immobilization are involved in the remediation process of heavy metals.展开更多
Cement raw meal with MSS and different heavy metals was blended to examine the fixation ratios, chemical species, and cement crystalline phases in clinkers. The results showed that blending MSS could decrease the fixa...Cement raw meal with MSS and different heavy metals was blended to examine the fixation ratios, chemical species, and cement crystalline phases in clinkers. The results showed that blending MSS could decrease the fixation ratio of Cr, Ni, Cu, and Zn in the produced clinker by 5% to 25%. And Cr, Cu, and Zn were mainly incorporated into clinkers as metal silicates, Ni was mainly solubilized in Mg O to form magnesium nickel oxides, and the transition phases were mainly metal aluminum oxides as indicated by X-ray diffraction. The reduction of fixation ratios was likely attributed to the presence of impure elements, such as sodium and phosphorus in MSS. In addition, high concentrations(eg, 1.7 wt%) of chlorine in MSS led to metal chloride formation that could vaporize Cu, Cr, Ni, and Zn. To summarize, introducing MSS would decrease the fixation ratios of heavy metals due to the presence of impure elements, such as sodium and phosphorus and chlorine.展开更多
In recent times,there had been reported cases of Pb poisoning in Anka gold mining area,Northwest Nigeria.Therefore,this study was carried out to determine the extent of bioaccumulation of heavy metals in the hairs and...In recent times,there had been reported cases of Pb poisoning in Anka gold mining area,Northwest Nigeria.Therefore,this study was carried out to determine the extent of bioaccumulation of heavy metals in the hairs and nails of children in the area.Forty samples(twenty nails and twenty hairs)samples were collected from ten boys and ten girls of ages 5–9 residing in the area.To ascertain the sources of heavy metals in children,15 soils samples,15 groundwater samples,5 samples of mine tailings,and 5 plants samples were collected.Hair and nails of the subjects were collected using internationally acceptable techniques.All samples were kept in uncontaminated ziplock bags prior to laboratory preparation and analysis.The samples were cleaned using nonionic detergent(triton X-100)and deionized water.The hairs and nails were digested with 10 mL of 6:1 mixture of nitric acid and perchloric acid.The soils,mine tailings,and plants were air-dried at room temperature,sieved,and chemically digested using the aqua regia method.The concentrations of metals in all the samples were determined using highperformance liquid chromatography–inductively coupled plasma–mass spectrometry.Statistical analysis was employed to unravel potential sources of metals in the media.Results showed that heavy metals in children of the area are above results from similar studies and pathological ranges for heavy metals in hairs and nails.Also,heavy metals in environmental media are above the recommended standards.Multivariate analysis showed that the metals are mainly from mining and other anthropogenic sources.Results of correlation between heavy metals in hairs and nails with those in geological samples revealed that heavy metal that bioaccumulates in the children of this area are mostly from contaminated environmental media.It is recommended that complete remediation and effective health education be carried out in the area.展开更多
In order to research the changing process of the pollution from the formation of Nansihu Lake, this study determined the isotope age and depositional rate and analyzed the organic geo-chem...In order to research the changing process of the pollution from the formation of Nansihu Lake, this study determined the isotope age and depositional rate and analyzed the organic geo-chemical quotas and heavy metal quotas of two sedimentary profiles of Weishan and Dushan lakes. Research results showed that from the formation of Nansihu Lake, the change of the pollution could be divided into four phrases. At the early phrase of the formation, the organic matters of the lake mainly derived from the exotic matters and had a close relation to the effect on the water and sands from the Huanghe (Yellow) River. At the middle and late phrases of the development, the endogenous matters of the lake became the main and stable source of the organic matters. The overflow of the Huanghe River, the excavation of the Grand Canal and the cut of trees caused the changes of the historic pollution. In recent 20 years, the modern industrial pollution from the organic matters and heavy metals has an increasingly heavy tendency.展开更多
Aerosol samples were collected at altitudes from 584 m a.s.l.to 3,804 m a.s.l.at seven sites of the eastern Tianshan.The occurrence,distribution,and possible sources of 47 trace metals—including alkali metals and alk...Aerosol samples were collected at altitudes from 584 m a.s.l.to 3,804 m a.s.l.at seven sites of the eastern Tianshan.The occurrence,distribution,and possible sources of 47 trace metals—including alkali metals and alkali earth metals,transition metals,lanthanoids,and heavy metals—were investigated.It was found that four sampling sites(Shuinichang,1,691 m a.s.l.;Urumqi City,809 m a.s.l.;Fu Kang Station,584 m a.s.l.;and Bogeda Glacier No.4,3,613 m a.s.l.)were contaminated mainly by heavy metals.Other three high-altitude sites(Urumqi Glacier No.1,3,804 m a.s.l.;Wang Feng road-maintenance station,3,039 m a.s.l.;and Tianshan Glaciology Station,2,135 m a.s.l.)were not polluted.The aerosol particles were clustered into two dominant types:crust-originated particles and pollution-derived particles.Aerosols from UG1,WF,and TGS were characterized by crust-originated particles such as clay,plagioclase,dolomite,alkali feldspar,and biotite;while those from SNC,Urumqi,FK,and BG4 were characterized by high content of Cl-rich particles,S-rich particles,and soot.The backward-trajectories results indicated that air masses arriving at SNC,Urumqi,FK,and BG4 were identified as the more polluted source,when compared to the short-range air mass transport from the North to UGI and WF.Relatively lower altitude,as well as terrain blocking,might be another important reason for the gradient difference in pollution influence among these seven places in the Urumqi River Basin.展开更多
A kind of new scintillating glass based on PbO-Bi2O3 heavy-metal oxides was prepared by doping a certain amount of SiO2, B2O3 and a little Ce3+ ions as fluorescence agent using conventional melt quenching technology. ...A kind of new scintillating glass based on PbO-Bi2O3 heavy-metal oxides was prepared by doping a certain amount of SiO2, B2O3 and a little Ce3+ ions as fluorescence agent using conventional melt quenching technology. The fluorescence properties of the glass were investigated by means of ultraviolet-visible (UV-VIS) absorption spectrum, excitation spectrum, emission spectrum, multi-channel time spectrum and transmission spectrum. The results show that the density of the glass reaches 7.89 g/cm3, and its fluorescence emission wavelength is 547 nm, fluorescence fade time 18.68 ns. Compared to CeF3, YAP, GSO, ThF4 and PbF4 etc. scintilla-ting crystals, the glass has a higher density, a faster scintillation decay constant, a longer emission wavelength and cut off wavelength. But its ability of radiation-resistance must be improved in order to meet the requirements of application in high energy physics experiments under 106 rad radiation in Co60 source.展开更多
Population explosion in the last decades together with global industrialization has caused heavy-metal contamination of air, water and soil, resulting in diverse incurable effects on humans and on the stability of the...Population explosion in the last decades together with global industrialization has caused heavy-metal contamination of air, water and soil, resulting in diverse incurable effects on humans and on the stability of the ecosystem. Non-biodegradable heavy-metals can remain in the ecosystem and the threat associated with their bioaccumulation in food chains represents one of the major environmental and health problems of present day society. Several studies were carried out to understand the ecological effects of the heavy-metal Zn in soil-plant systems. Plants often have a zinc uptake that their systems cannot handle, due to the accumulation of zinc in soils. Of the several Zn toxicity symptoms, fatal are yield reduction, stunted growth, chlorosis, reduced chlorophyll synthesis and chloroplast degradation. Vigna unguiculata is an herbaceous, annual plant in the pea family Fabaceae. In the present study, an experiment was performed to evaluate the Zn phytoextracting ability of V. unguiculata under in vitro condition. We establish that V. unguiculata can uptake a considerable amount of the heavy-metal zinc and this phytoextraction property can be utilized in long run for the cleanup of zinc contaminated soil. To the best of our knowledge, this is the first report of Zn phytoextraction ability of V. unguiculata.展开更多
The amount of urban sewage sludge is increasing daily. For this reason, it is necessary to have an environmentally friendly use for this residue. Land applications in olive grove soil, poor quality soil, as a compost ...The amount of urban sewage sludge is increasing daily. For this reason, it is necessary to have an environmentally friendly use for this residue. Land applications in olive grove soil, poor quality soil, as a compost or a compost tea could be considered as one of the best options, because it has a high content of organic matter. However, the presence of heavy metals in some sewage sludge could be an environmental problem. In this sense, the aim of this work is to check the tolerance of the culturable microbiota present in sewage sludge compost tea to four heavy metals, Cu, Cd, Pb and Zn. Among microbiota isolated, eight strains showed high resistance to Pb, Zn, Cu and Cd, and one microbe (Rhodococcus sp.) showed a special tolerance to every heavy metal. The strains were divided into six genrera: Rhodococcus, Virgibacillus, Leifsoni, Achromobacter, Cupriavidus and Oceanobacillus sp. Finally, Rhodococcus sp. strain 3 was able to remove different amounts of heavy metals from the culture media with intracellular and surface accumulation of Cu, Zn, Pb and Cd. The application of this bacterial strain in bioremediation processes is discussed.展开更多
Paddy soils are an important source of atmospheric nitrous oxide(N_(2)O).However,numerous studies have focused on N_(2)O production during the soil tillage period,neglecting the N_(2)O production during the dry fallow...Paddy soils are an important source of atmospheric nitrous oxide(N_(2)O).However,numerous studies have focused on N_(2)O production during the soil tillage period,neglecting the N_(2)O production during the dry fallow period.In this study,we conducted an incubation experiment using the acetylene inhibition technique to investigate N_(2)O emission and reduction rates of paddy soil profiles(0-1 m)from Guangdong Province and Jinlin Province in China,with different heavy-metal pollution levels.The abundance and community structures of denitrifying bacteria were determined via quantitative-PCR and Illumina MiSeq sequencing of nosZ,nirK,and nirS genes.Our results showed that the potential N_(2)O emission rate,N_(2)O production rate,and denitrification rate have decreased with increasing soil vertical depth and heavy-metal pollution.More importantly,we found that the functional gene type of N_(2)O reductase switched with the tillage state of paddy soils,which cladeⅡnos Z genes were the dominant gene during the tillage period,while cladeⅠnos Z genes were the dominant gene during the dry fallow period.The heavy-metal pollution has less effect on the niche differentiation of the nos Z gene.The N_(2)O emission rate was significantly regulated by the genus Bradyhizobium,which contains both N_(2)O reductase and nitrite reductase genes.Our findings suggests that the nos Z gene of N_(2)O reductase can significantly impact the N_(2)O emission from paddy soils.展开更多
Laser-induced graphene(LIG)is a highly promising preparation material for electrochemical sensors;however,its preparation speed and nanomaterial modification steps significantly limit its mass production.Herein,this s...Laser-induced graphene(LIG)is a highly promising preparation material for electrochemical sensors;however,its preparation speed and nanomaterial modification steps significantly limit its mass production.Herein,this study proposed a new laser printing strategy that considerably improved the preparation speed of LIG with excellent electrochemical performance.Using the optimal parameters(laser power of 1%,scribing spacing of 0.12 mm,scribing speed of 100 mm·s^(−1)),it took only 14.2 s to complete the preparation of the detection electrode.Thus,we successfully detected Cd^(2+)and Pb^(2+)without any toxic reagents or electrode modification steps.The limits of detection of the sensor were 0.914 and 0.916μg·L^(−1)for Cd^(2+)and Pb^(2+),respectively,which are significantly lower than the required values for drinking-water quality,according to the World Health Organization guidelines.This study provides a novel approach for the rapid detection of heavy-metal ions.展开更多
In order to eliminate secondary pollution caused by municipal solid waste(MSW)incineration,a MSW gasification and melting process is proposed.The process is expected to reduce the emission of pollutants,especially hea...In order to eliminate secondary pollution caused by municipal solid waste(MSW)incineration,a MSW gasification and melting process is proposed.The process is expected to reduce the emission of pollutants,especially heavy-metals and dioxins.In this paper,the combustible components of MSW and simulated MSW were gasified in a lab-scale fluidized bed at 400°C-700°C when the excess air ratio(ER)was between 0.2 and 0.8.The experimental results indicated that the MSW could be gasified effectively in a fluidized bed at approximately 600°C-700°C when excess air ratio was 0.2-0.4.The melting characteristics of two typical fly ash samples from MSW incinerators were investigated.The results indicated that fly ash of pure MSW incineration could be melted at approximately 1,300°C and that of MSW and coal co-combustion could be melted at approximately 1,400°C.When temperature was over 1,100°C,more than 99.9%of the dioxins could be decomposed and most of the heavy-metals could be solidified in the slag.Based on the above experiments,two feasible MSW gasification and mel-ting processes were proposed for low calorific value MSW:(1)sieved MSW gasification and melting system,which was based on an idea of multi-recycle;(2)gasification and melting scheme of MSW adding coal as assistant fuel.展开更多
基金supported by the National Key R&D Program of China(No.2018YFD0901004)the National Natural Science Foundation of China(No.31601538)+2 种基金the Key Science and Technology Program of Liaoning Province(No.2020JH1/10200001)the Fundamental Research Foundation of Education Department of Liaoning Province(No.JL202008)the Science&Technology Innovation Foundation of Dalian(No.2019J12SN61).
文摘Heavy metal ions in shellfish products are harmful to human health,and their removal with low nutrient loss remains challenging.Herein,a new type of mesoporous silica(SBA15),modified internally with ammonium pyrrolidine dithiocarbamate(APDC)and externally with alkyl-diol groups,which was named as Diol-APDC-SBA15,was successfully developed and characterized by powder X-ray diffraction patterns,nitrogen adsorption,and Fourier transform infrared spectroscopy.The solutions with lead,chromium,cadmium,and copper were used to investigate the adsorption capacity of Diol-APDC-SBA15.Diol-APDC-SBA15 was adopted to remove heavy metals from cooking liquids of clams(Ruditapes philippinarum),hydrolysate liquids of oysters(Ostrea gigas Thunberg),and polysaccharide solution from the cooking liquid of R.philippinarum.The efficiencies of removing heavy metal ions and the loss rates of proteins and polysaccharides were examined.The results showed that the adsorption capacities of Diol-APDCSBA15 for Pb,Cr,Cd,and Cu in standard heavy-metal solutions were 161.4,166.1,29.6,and 60.2mgg^(−1),respectively.The removal efficiency of Diol-APDC-SBA15 for Pb in the three shellfish processing liquids ranged from 60.5%to 99.6%.The Cr removal efficiency was above 99.9%in the oyster hydrolysate liquid.Meanwhile,the percentages of polysaccharide loss were 5.5%and 3.7%in the cooking liquid of clam and polysaccharide solution,respectively,and the protein loss was 1.2%in the oyster hydrolysate liquid.Therefore,the Diol-APDC-SBA15 material exhibits a great potential application in the removal of heavy metals from shellfish processing liquids with low losses of proteins and polysaccharides.
基金National Natural Science Foundation of ChinaPh.D.Education Foundation of National Educational Committee of China.
文摘Although there are arguments on the mechanisms of specific adsorptioh of heavy-metal ion (HMI) on the surface of Fe and A1 oxides, the following methodological definition of the specific adsorption is commonly accepted: the specific adsorptions are those trace HMIs adsorbed by oxides in the presence of alkaline or alkaline-earth metal ions (AAEMI)
基金Fundamental Research Funds for the Central Universities,Grant/Award Numbers:WK2060000034,WK2060000036,WK2480000007Science and Technology Major Project of Anhui Province,Grant/Award Number:201903a05020003+6 种基金Key Research Program of Frontier Sciences,Chinese Academy of Sciences,Grant/Award Number:QYZDJ-SSW-SLH036Foundation for Innovative Research Groups of the National Natural Science Foundation of China,Grant/Award Number:21521001Hefei Innovative Program for Overseas Excellent Scholars,Grant/Award Number:BJ2090007002National Natural Science Foundation of China,Grant/Award Numbers:22075269,22105196,51732011,U1932213National Key Research and Development Program of China,Grant/Award Numbers:2018YFE0202201,2020YFA0710100,2021YFA0715700University Synergy Innovation Program of Anhui Province,Grant/Award Number:GXXT-2019-028National Natural Science Fund for Excellent Young Scientists Fund Program(Overseas)。
文摘Interfacial solar steam generation(ISSG),involving the use of solar energy to evaporate water at the water-to-vapor interface,has presented prospects for the desalination and purification of water due to high energy conversion efficiency and low-cost freshwater generation.Herein,inspired by the aligned nanostructure of plants for efficiently transporting nutrient ions,we optimally design and construct a biomass-based Janus architecture evaporator with an oriented nanostructure for ISSG,using the ice template method,followed by biomimetic mineralization with the resource-abundant and low-cost biomass of the carboxymethyl cellulose and sodium alginate as the raw materials.Taking advantage of the oriented nanostructure allowing efficient transportation of water and coordination capacity of sodium alginate for effective enrichment of heavy-metal ions,the biomass-based Janus architecture shows much lower thermal conductivity and an ultrahigh steam regeneration rate of 2.3 kg m−2 h−1,considerably surpassing those of previously reported oriented biomass-based evaporators.Moreover,the biomass precursor materials are used for this Janus evaporator,guaranteeing minimum impact on the water ecology and environment during the regeneration process of clean drinking water.This study presents an efficient,green,and sustainable pathway for ISSG to effectively achieve heavy-metal-free drinking water.
文摘The aim of the study is to comparatively assess the concentrations of lead, zinc and iron in Rivers Ase, Warri and Ethiope, in Nigeria. Monthly water samples were collected from six randomly selected sites along the rivers course. 72 water samples were collected from each river at 0 - 15 cm depths. Samples were analysed based on the standard methods recommended by the WHO for testing lead, zinc and iron. The assessment of the water quality was done using the Water Quality Index (WQI) of the Canadian Council of Ministers of the Environment (CCME-WQI). While hypotheses were tested using ANOVA. Findings indicated that CCME-WQI values were 47.3, 66.52 and 78.7. This meant that the water quality of River Ase is impaired and departed from desirable levels, while that of Warri and Ethiope were considered to occasionally be impaired and depart from desirable levels. The ANOVA model showed that there is a significant variation in heavy metal load in the selected rivers at P < 0.05. River water was put to domestic uses such as drinking (20.5%) preparing food (17.8%), bathing (19.8%), washing clothes and dishes (21.3%), brushing teeth (13.3%), and catering for domestic animals (7.5%). Poverty (49.5%) was the major reason for the use of river water for domestic purposes. The locals highlighted that they usually suffer from cholera (26.8%), diarrhoea (25.8%), dysentery (24%) and typhoid (23.5%) as a result of using the river water. The study recommended routine monitoring of anthropogenic and geologic activities, testing of the water regularly amongst others.
文摘Current globalization trends and important breakthroughs globally need a complete study of heavy metal contamination, its causes, its impacts on human and environmental health, and different remediation strategies. Heavy metal pollution is mostly produced by urbanization and industry, which threatens ecosystems and human health. Herein, we discuss a sustainable environmental restoration strategy employing phytoremediation for heavy metal pollution, the carcinogenic, mutagenic, and cytotoxic effects of heavy metals such as cadmium, copper, mercury, selenium, zinc, arsenic, chromium, lead, nickel, and silver, which may be fatal. Phytoremediation, which was prioritized, uses plants to remove, accumulate, and depollute pollutants. This eco-friendly method may safely collect, accumulate, and detoxify toxins using plants, making it popular. This study covers phytostabilization, phytodegradation, rhizodegradation, phytoextraction, phytovolatilization, and rhizofiltration. A phytoremediation process’s efficiency in varied environmental circumstances depends on these components’ complex interplay. This paper also introduces developing phytoremediation approaches including microbe-assisted, chemical-assisted, and organic or bio-char use. These advancements attempt to overcome conventional phytoremediation’s limitations, such as limited suitable plant species, location problems, and sluggish remediation. Current research includes machine learning techniques and computer modeling, biostimulation, genetic engineering, bioaugmentation, and hybrid remediation. These front-line solutions show that phytoremediation research is developing towards transdisciplinary efficiency enhancement. We acknowledge phytoremediation’s promise but also its drawbacks, such as site-specific variables, biomass buildup, and sluggish remediation, as well as ongoing research to address them. In conclusion, heavy metal pollution threatens the ecology and public health and must be reduced. Phytoremediation treats heavy metal pollution in different ways. Over time, phytoremediation systems have developed unique ways that improve efficiency. Despite difficulties like site-specificity, sluggish remediation, and biomass buildup potential, phytoremediation is still a vital tool for environmental sustainability.
基金Project(K1201010-61)supported by the Science and Technology Program of Changsha,ChinaProject(51074191)supported by the National Natural Science Foundation of ChinaProject(2012BAC09B04)supported by National Key Technology Research and Development Program,China
文摘Soil contaminated with typical heavy metals (Pb,Cd,Cu,and Zn) was remedied by using the polymeric aluminum salt coagulants including polyaluminum chloride (PAC) and polyaluminum sulfate (PAS).The remediation efficiencies are influenced by reaction time,water amount,and dosage of remediation agent.The optimal remediation conditions are as follows:6 h of reaction time,1 kg/kg of water addition amount,and 0.25 kg/kg of remediation agent dosage.After PAC addition,the remediation efficiencies of diethylenetriamine-pentaacetic acid (DTPA)-extractable Pb,Cd,Cu,and Zn reach 88.3%,85.1%,85.4%,and 73.7%,respectively;and those for PAS are 89.7%,88.7%,83.5%,and 72.6%,respectively.The main remediation mechanism of the polymeric aluminum salt may contribute to the ionization and hydrolysis of PAC and PAS.H + released from ionization of polymeric aluminum salt can cause the leaching of heavy metals,while the multinuclear complex produced from hydrolysis may result in the immobilization of heavy metals.For PAC,the immobilization of heavy metals is the main remediation process.For PAS,both leaching and immobilization are involved in the remediation process of heavy metals.
基金the National Major Science and Technology Project of Water Pollution Control and Management,China(No.2010ZX07319-001-02)
文摘Cement raw meal with MSS and different heavy metals was blended to examine the fixation ratios, chemical species, and cement crystalline phases in clinkers. The results showed that blending MSS could decrease the fixation ratio of Cr, Ni, Cu, and Zn in the produced clinker by 5% to 25%. And Cr, Cu, and Zn were mainly incorporated into clinkers as metal silicates, Ni was mainly solubilized in Mg O to form magnesium nickel oxides, and the transition phases were mainly metal aluminum oxides as indicated by X-ray diffraction. The reduction of fixation ratios was likely attributed to the presence of impure elements, such as sodium and phosphorus in MSS. In addition, high concentrations(eg, 1.7 wt%) of chlorine in MSS led to metal chloride formation that could vaporize Cu, Cr, Ni, and Zn. To summarize, introducing MSS would decrease the fixation ratios of heavy metals due to the presence of impure elements, such as sodium and phosphorus and chlorine.
基金sponspored by research opening fund of State Key Laboratory of Environmental Geochemistry,Guiyang,Guizhou Province,China with grant No.SKLEG2017910。
文摘In recent times,there had been reported cases of Pb poisoning in Anka gold mining area,Northwest Nigeria.Therefore,this study was carried out to determine the extent of bioaccumulation of heavy metals in the hairs and nails of children in the area.Forty samples(twenty nails and twenty hairs)samples were collected from ten boys and ten girls of ages 5–9 residing in the area.To ascertain the sources of heavy metals in children,15 soils samples,15 groundwater samples,5 samples of mine tailings,and 5 plants samples were collected.Hair and nails of the subjects were collected using internationally acceptable techniques.All samples were kept in uncontaminated ziplock bags prior to laboratory preparation and analysis.The samples were cleaned using nonionic detergent(triton X-100)and deionized water.The hairs and nails were digested with 10 mL of 6:1 mixture of nitric acid and perchloric acid.The soils,mine tailings,and plants were air-dried at room temperature,sieved,and chemically digested using the aqua regia method.The concentrations of metals in all the samples were determined using highperformance liquid chromatography–inductively coupled plasma–mass spectrometry.Statistical analysis was employed to unravel potential sources of metals in the media.Results showed that heavy metals in children of the area are above results from similar studies and pathological ranges for heavy metals in hairs and nails.Also,heavy metals in environmental media are above the recommended standards.Multivariate analysis showed that the metals are mainly from mining and other anthropogenic sources.Results of correlation between heavy metals in hairs and nails with those in geological samples revealed that heavy metal that bioaccumulates in the children of this area are mostly from contaminated environmental media.It is recommended that complete remediation and effective health education be carried out in the area.
文摘In order to research the changing process of the pollution from the formation of Nansihu Lake, this study determined the isotope age and depositional rate and analyzed the organic geo-chemical quotas and heavy metal quotas of two sedimentary profiles of Weishan and Dushan lakes. Research results showed that from the formation of Nansihu Lake, the change of the pollution could be divided into four phrases. At the early phrase of the formation, the organic matters of the lake mainly derived from the exotic matters and had a close relation to the effect on the water and sands from the Huanghe (Yellow) River. At the middle and late phrases of the development, the endogenous matters of the lake became the main and stable source of the organic matters. The overflow of the Huanghe River, the excavation of the Grand Canal and the cut of trees caused the changes of the historic pollution. In recent 20 years, the modern industrial pollution from the organic matters and heavy metals has an increasingly heavy tendency.
基金supported by the National Natural Science Foundation of China (41201065 41121001, 41261017, 41171057, 41161012)the Funds for Creative Research Groups of China (41121001)+3 种基金the foundation for Excellent Youth Scholars of CAREERI, CAS (51Y251B51)the SKLCS foundation (Grant No. SKLCSZZ-2012-01-01)the National Basic Research Program of China (2010CB951003, 2010CB951404)the Knowledge Innovation Project of the Chinese Academy of Sciences (KZCX2-EW-311)
文摘Aerosol samples were collected at altitudes from 584 m a.s.l.to 3,804 m a.s.l.at seven sites of the eastern Tianshan.The occurrence,distribution,and possible sources of 47 trace metals—including alkali metals and alkali earth metals,transition metals,lanthanoids,and heavy metals—were investigated.It was found that four sampling sites(Shuinichang,1,691 m a.s.l.;Urumqi City,809 m a.s.l.;Fu Kang Station,584 m a.s.l.;and Bogeda Glacier No.4,3,613 m a.s.l.)were contaminated mainly by heavy metals.Other three high-altitude sites(Urumqi Glacier No.1,3,804 m a.s.l.;Wang Feng road-maintenance station,3,039 m a.s.l.;and Tianshan Glaciology Station,2,135 m a.s.l.)were not polluted.The aerosol particles were clustered into two dominant types:crust-originated particles and pollution-derived particles.Aerosols from UG1,WF,and TGS were characterized by crust-originated particles such as clay,plagioclase,dolomite,alkali feldspar,and biotite;while those from SNC,Urumqi,FK,and BG4 were characterized by high content of Cl-rich particles,S-rich particles,and soot.The backward-trajectories results indicated that air masses arriving at SNC,Urumqi,FK,and BG4 were identified as the more polluted source,when compared to the short-range air mass transport from the North to UGI and WF.Relatively lower altitude,as well as terrain blocking,might be another important reason for the gradient difference in pollution influence among these seven places in the Urumqi River Basin.
文摘A kind of new scintillating glass based on PbO-Bi2O3 heavy-metal oxides was prepared by doping a certain amount of SiO2, B2O3 and a little Ce3+ ions as fluorescence agent using conventional melt quenching technology. The fluorescence properties of the glass were investigated by means of ultraviolet-visible (UV-VIS) absorption spectrum, excitation spectrum, emission spectrum, multi-channel time spectrum and transmission spectrum. The results show that the density of the glass reaches 7.89 g/cm3, and its fluorescence emission wavelength is 547 nm, fluorescence fade time 18.68 ns. Compared to CeF3, YAP, GSO, ThF4 and PbF4 etc. scintilla-ting crystals, the glass has a higher density, a faster scintillation decay constant, a longer emission wavelength and cut off wavelength. But its ability of radiation-resistance must be improved in order to meet the requirements of application in high energy physics experiments under 106 rad radiation in Co60 source.
文摘Population explosion in the last decades together with global industrialization has caused heavy-metal contamination of air, water and soil, resulting in diverse incurable effects on humans and on the stability of the ecosystem. Non-biodegradable heavy-metals can remain in the ecosystem and the threat associated with their bioaccumulation in food chains represents one of the major environmental and health problems of present day society. Several studies were carried out to understand the ecological effects of the heavy-metal Zn in soil-plant systems. Plants often have a zinc uptake that their systems cannot handle, due to the accumulation of zinc in soils. Of the several Zn toxicity symptoms, fatal are yield reduction, stunted growth, chlorosis, reduced chlorophyll synthesis and chloroplast degradation. Vigna unguiculata is an herbaceous, annual plant in the pea family Fabaceae. In the present study, an experiment was performed to evaluate the Zn phytoextracting ability of V. unguiculata under in vitro condition. We establish that V. unguiculata can uptake a considerable amount of the heavy-metal zinc and this phytoextraction property can be utilized in long run for the cleanup of zinc contaminated soil. To the best of our knowledge, this is the first report of Zn phytoextraction ability of V. unguiculata.
文摘The amount of urban sewage sludge is increasing daily. For this reason, it is necessary to have an environmentally friendly use for this residue. Land applications in olive grove soil, poor quality soil, as a compost or a compost tea could be considered as one of the best options, because it has a high content of organic matter. However, the presence of heavy metals in some sewage sludge could be an environmental problem. In this sense, the aim of this work is to check the tolerance of the culturable microbiota present in sewage sludge compost tea to four heavy metals, Cu, Cd, Pb and Zn. Among microbiota isolated, eight strains showed high resistance to Pb, Zn, Cu and Cd, and one microbe (Rhodococcus sp.) showed a special tolerance to every heavy metal. The strains were divided into six genrera: Rhodococcus, Virgibacillus, Leifsoni, Achromobacter, Cupriavidus and Oceanobacillus sp. Finally, Rhodococcus sp. strain 3 was able to remove different amounts of heavy metals from the culture media with intracellular and surface accumulation of Cu, Zn, Pb and Cd. The application of this bacterial strain in bioremediation processes is discussed.
基金supported by the National Natural Science Foundation of China (Nos.91851204 and 92251304)the Excellent Innovation Project of Research Center for EcoEnvironmental Sciences,Chinese Academy of Sciences (No.RCEES-EEI-2019-02)the Program of the Youth Innovation Promotion Association of Chinese Academy of Sciences。
文摘Paddy soils are an important source of atmospheric nitrous oxide(N_(2)O).However,numerous studies have focused on N_(2)O production during the soil tillage period,neglecting the N_(2)O production during the dry fallow period.In this study,we conducted an incubation experiment using the acetylene inhibition technique to investigate N_(2)O emission and reduction rates of paddy soil profiles(0-1 m)from Guangdong Province and Jinlin Province in China,with different heavy-metal pollution levels.The abundance and community structures of denitrifying bacteria were determined via quantitative-PCR and Illumina MiSeq sequencing of nosZ,nirK,and nirS genes.Our results showed that the potential N_(2)O emission rate,N_(2)O production rate,and denitrification rate have decreased with increasing soil vertical depth and heavy-metal pollution.More importantly,we found that the functional gene type of N_(2)O reductase switched with the tillage state of paddy soils,which cladeⅡnos Z genes were the dominant gene during the tillage period,while cladeⅠnos Z genes were the dominant gene during the dry fallow period.The heavy-metal pollution has less effect on the niche differentiation of the nos Z gene.The N_(2)O emission rate was significantly regulated by the genus Bradyhizobium,which contains both N_(2)O reductase and nitrite reductase genes.Our findings suggests that the nos Z gene of N_(2)O reductase can significantly impact the N_(2)O emission from paddy soils.
基金the Hunan Provincial Natural Science Foundation of China(No.2022JJ30333)the Changsha Municipal Nature Science Foundation(No.kq2202352).
文摘Laser-induced graphene(LIG)is a highly promising preparation material for electrochemical sensors;however,its preparation speed and nanomaterial modification steps significantly limit its mass production.Herein,this study proposed a new laser printing strategy that considerably improved the preparation speed of LIG with excellent electrochemical performance.Using the optimal parameters(laser power of 1%,scribing spacing of 0.12 mm,scribing speed of 100 mm·s^(−1)),it took only 14.2 s to complete the preparation of the detection electrode.Thus,we successfully detected Cd^(2+)and Pb^(2+)without any toxic reagents or electrode modification steps.The limits of detection of the sensor were 0.914 and 0.916μg·L^(−1)for Cd^(2+)and Pb^(2+),respectively,which are significantly lower than the required values for drinking-water quality,according to the World Health Organization guidelines.This study provides a novel approach for the rapid detection of heavy-metal ions.
文摘In order to eliminate secondary pollution caused by municipal solid waste(MSW)incineration,a MSW gasification and melting process is proposed.The process is expected to reduce the emission of pollutants,especially heavy-metals and dioxins.In this paper,the combustible components of MSW and simulated MSW were gasified in a lab-scale fluidized bed at 400°C-700°C when the excess air ratio(ER)was between 0.2 and 0.8.The experimental results indicated that the MSW could be gasified effectively in a fluidized bed at approximately 600°C-700°C when excess air ratio was 0.2-0.4.The melting characteristics of two typical fly ash samples from MSW incinerators were investigated.The results indicated that fly ash of pure MSW incineration could be melted at approximately 1,300°C and that of MSW and coal co-combustion could be melted at approximately 1,400°C.When temperature was over 1,100°C,more than 99.9%of the dioxins could be decomposed and most of the heavy-metals could be solidified in the slag.Based on the above experiments,two feasible MSW gasification and mel-ting processes were proposed for low calorific value MSW:(1)sieved MSW gasification and melting system,which was based on an idea of multi-recycle;(2)gasification and melting scheme of MSW adding coal as assistant fuel.