The Landau problem on non-commutative quantum mechanics is studied, where the Heisenberg algebra and the Landau energy levels as well as the non-commutative angular momentum are constructed in detail in non-commutativ...The Landau problem on non-commutative quantum mechanics is studied, where the Heisenberg algebra and the Landau energy levels as well as the non-commutative angular momentum are constructed in detail in non-commutative space and non-commutative phase space respectively.展开更多
We renormalize the model of multiple Dirac delta potentials in two and three dimensions by regularizing it through the minimal extension of Heisenberg algebra. We show that the results are consistent with the other re...We renormalize the model of multiple Dirac delta potentials in two and three dimensions by regularizing it through the minimal extension of Heisenberg algebra. We show that the results are consistent with the other regularization schemes given in the literature.展开更多
The twisted Heisenberg-Virasoro algebra is the universal central extension of the Lie algebra of differential operators on a circle of order at most one.In this paper,we first study the variety of semi-conformal vecto...The twisted Heisenberg-Virasoro algebra is the universal central extension of the Lie algebra of differential operators on a circle of order at most one.In this paper,we first study the variety of semi-conformal vectors of the twisted Heisenberg-Virasoro vertex operator algebra,which is a finite set consisting of two nontrivial elements.Based on this property,we also show that the twisted Heisenberg-Virasoro vertex operator algebra is a tensor product of two vertex operator algebras.Moreover,associating to properties of semi-conformal vectors of the twisted Heisenberg-Virasoro vertex operator algebra,we charaterized twisted Heisenberg-Virasoro vertex operator algebras.This will be used to understand the classification problems of vertex operator algebras whose varieties of semi-conformal vectors are finite sets.展开更多
In this paper,we consider a possible modification of the de Sitter and anti-de Sitter space for the extended uncertainty principle.For the modified anti-de Sitter model we discuss the representation and wave functions...In this paper,we consider a possible modification of the de Sitter and anti-de Sitter space for the extended uncertainty principle.For the modified anti-de Sitter model we discuss the representation and wave functions of the momentum operator for a one-dimensional box problem.Also,we consider modified Snyder and anti-Snyder models for the generalized uncertainty principle.Then,we assume the Hamiltonian with different potential and solve the Heisenberg algebra for the modified(anti)-de Sitter and(anti)-Snyder models in both position and in the momentum space.展开更多
The breakdown of the Heisenberg Uncertainty Principle occurs when energies approach the Planck scale, and the corresponding Schwarzschild radius becomes similar to the Compton wavelength. Both of these quantities are ...The breakdown of the Heisenberg Uncertainty Principle occurs when energies approach the Planck scale, and the corresponding Schwarzschild radius becomes similar to the Compton wavelength. Both of these quantities are approximately equal to the Planck length. In this context, we have introduced a model that utilizes a combination of Schwarzschild’s radius and Compton length to quantify the gravitational length of an object. This model has provided a novel perspective in generalizing the uncertainty principle. Furthermore, it has elucidated the significance of the deforming linear parameter β and its range of variation from unity to its maximum value.展开更多
In this paper,we will give the definition of completable nilpotent Lie algebras,discuss its decomposition and prove that the heisenberg algebras and extensions of abelian quadratic Lie algebras are all completable nil...In this paper,we will give the definition of completable nilpotent Lie algebras,discuss its decomposition and prove that the heisenberg algebras and extensions of abelian quadratic Lie algebras are all completable nilpotent Lie algebras.展开更多
基金Project supported by the National Natural Science Foundation of China (Grant Nos 90303003 and 10575026) and the Natural Science Foundation of Zhejiang Province, China (Grant No M103042).
文摘The Landau problem on non-commutative quantum mechanics is studied, where the Heisenberg algebra and the Landau energy levels as well as the non-commutative angular momentum are constructed in detail in non-commutative space and non-commutative phase space respectively.
文摘We renormalize the model of multiple Dirac delta potentials in two and three dimensions by regularizing it through the minimal extension of Heisenberg algebra. We show that the results are consistent with the other regularization schemes given in the literature.
基金supported by The Key Research Project of Institutions of Higher Education in Henan Province,P.R.China(No.17A11003)
文摘The twisted Heisenberg-Virasoro algebra is the universal central extension of the Lie algebra of differential operators on a circle of order at most one.In this paper,we first study the variety of semi-conformal vectors of the twisted Heisenberg-Virasoro vertex operator algebra,which is a finite set consisting of two nontrivial elements.Based on this property,we also show that the twisted Heisenberg-Virasoro vertex operator algebra is a tensor product of two vertex operator algebras.Moreover,associating to properties of semi-conformal vectors of the twisted Heisenberg-Virasoro vertex operator algebra,we charaterized twisted Heisenberg-Virasoro vertex operator algebras.This will be used to understand the classification problems of vertex operator algebras whose varieties of semi-conformal vectors are finite sets.
文摘In this paper,we consider a possible modification of the de Sitter and anti-de Sitter space for the extended uncertainty principle.For the modified anti-de Sitter model we discuss the representation and wave functions of the momentum operator for a one-dimensional box problem.Also,we consider modified Snyder and anti-Snyder models for the generalized uncertainty principle.Then,we assume the Hamiltonian with different potential and solve the Heisenberg algebra for the modified(anti)-de Sitter and(anti)-Snyder models in both position and in the momentum space.
文摘The breakdown of the Heisenberg Uncertainty Principle occurs when energies approach the Planck scale, and the corresponding Schwarzschild radius becomes similar to the Compton wavelength. Both of these quantities are approximately equal to the Planck length. In this context, we have introduced a model that utilizes a combination of Schwarzschild’s radius and Compton length to quantify the gravitational length of an object. This model has provided a novel perspective in generalizing the uncertainty principle. Furthermore, it has elucidated the significance of the deforming linear parameter β and its range of variation from unity to its maximum value.
基金Supported by National Science Foundation of Jiangau.
文摘In this paper,we will give the definition of completable nilpotent Lie algebras,discuss its decomposition and prove that the heisenberg algebras and extensions of abelian quadratic Lie algebras are all completable nilpotent Lie algebras.