Comparative genomics is a powerful approach that comprehensively interprets the genome. Herein, we performed whole genome comparative analysis of 16 Diptera genomes, including four mosquitoes and 12 Drosophilae. We fo...Comparative genomics is a powerful approach that comprehensively interprets the genome. Herein, we performed whole genome comparative analysis of 16 Diptera genomes, including four mosquitoes and 12 Drosophilae. We found more than 540 000 constraint elements (CEs) in the Diptera genome, with the majority found in the intergenic, coding and intronic regions. Accelerated elements (AEs) identified in mosquitoes were mostly in the proteincoding regions (〉93%), which differs from vertebrates in genomic distribution. Some genes functionally enriched in blood digestion, body temperature regulation and insecticide resistance showed rapid evolution not only in the lineage of the recent common ancestor of mosquitoes (RCAM), but also in some mosquito lineages. This may be associated with lineage-specific traits and/or adaptations in comparison with other insects. Our findings revealed that although universally fast evolution acted on biological systems in RCAM, such as hematophagy, same adaptations also appear to have occurred through distinct degrees of evolution in different mosquito species, enabling them to be successful blood feeders in different environments.展开更多
In arthropods,hematophagy has arisen several times throughout evolution.This specialized feeding behavior offered a highly nutritious diet obtained during blood feeds.On the other hand,blood-sucking arthropods must ov...In arthropods,hematophagy has arisen several times throughout evolution.This specialized feeding behavior offered a highly nutritious diet obtained during blood feeds.On the other hand,blood-sucking arthropods must overcome problems brought on by blood intake and digestion.Host blood complement acts on the bite site and is still ac-tive after ingestion,so complement activation is a potential threat to the host's skin feed-ing environment and to the arthropod gut enterocytes.During evolution,blood-sucking arthropods have selected,either in their saliva or gut,anticomplement molecules that inac-tivate host blood complement.This review presents an overview of the complement sys-tem and discusses the arthropod's salivary and gut anticomplement molecules studied to date,exploring their mechanism of action and other aspects related to the arthropod-host-pathogen interface.The possible therapeutic applications of arthropod's anticomplement molecules arealsodiscussed.展开更多
基金Foundation item: This work was supported by grants from the National Natural Science Foundation of China (31271339)
文摘Comparative genomics is a powerful approach that comprehensively interprets the genome. Herein, we performed whole genome comparative analysis of 16 Diptera genomes, including four mosquitoes and 12 Drosophilae. We found more than 540 000 constraint elements (CEs) in the Diptera genome, with the majority found in the intergenic, coding and intronic regions. Accelerated elements (AEs) identified in mosquitoes were mostly in the proteincoding regions (〉93%), which differs from vertebrates in genomic distribution. Some genes functionally enriched in blood digestion, body temperature regulation and insecticide resistance showed rapid evolution not only in the lineage of the recent common ancestor of mosquitoes (RCAM), but also in some mosquito lineages. This may be associated with lineage-specific traits and/or adaptations in comparison with other insects. Our findings revealed that although universally fast evolution acted on biological systems in RCAM, such as hematophagy, same adaptations also appear to have occurred through distinct degrees of evolution in different mosquito species, enabling them to be successful blood feeders in different environments.
文摘In arthropods,hematophagy has arisen several times throughout evolution.This specialized feeding behavior offered a highly nutritious diet obtained during blood feeds.On the other hand,blood-sucking arthropods must overcome problems brought on by blood intake and digestion.Host blood complement acts on the bite site and is still ac-tive after ingestion,so complement activation is a potential threat to the host's skin feed-ing environment and to the arthropod gut enterocytes.During evolution,blood-sucking arthropods have selected,either in their saliva or gut,anticomplement molecules that inac-tivate host blood complement.This review presents an overview of the complement sys-tem and discusses the arthropod's salivary and gut anticomplement molecules studied to date,exploring their mechanism of action and other aspects related to the arthropod-host-pathogen interface.The possible therapeutic applications of arthropod's anticomplement molecules arealsodiscussed.