In this paper,the polymer chain of rotator(PCOR) equation of state(EOS) was used together with an EOS/G^E mixing rule(MHV1) and the Wilson's equation as an excess-Gibbs-energy model in the proposed approach to ext...In this paper,the polymer chain of rotator(PCOR) equation of state(EOS) was used together with an EOS/G^E mixing rule(MHV1) and the Wilson's equation as an excess-Gibbs-energy model in the proposed approach to extend the capability and improve the accuracy of the PCOR EOS for predicting the Henry's constant of solutions containing polymers.The results of the proposed method compared with two equation of state(van der Waals and GC-Flory) and three activity coefficient models(UNIFAC,UNIFAC-FV and Entropic-FV) indicated that the PCOR EOS/Wilson's equation provided more accurate results.The interaction parameters of Wilson's equation were fitted with Henry's constant experimental data and the property parameters of PCOR,a and b,were fitted with experimental volume data(Tait equation).As a result,the present work provided a simple and useful model for prediction of Henry's constant for polymer solutions.展开更多
High-pressure vapor-liquid equilibrium data for the binary systems of methyl propionate+carbon dioxide and propyl propionate+carbon dioxide were measured at pressure from 1.00 MPa to 12.00 MPa and temperature in the...High-pressure vapor-liquid equilibrium data for the binary systems of methyl propionate+carbon dioxide and propyl propionate+carbon dioxide were measured at pressure from 1.00 MPa to 12.00 MPa and temperature in the range from 313 K to 373 K. Experimental results were correlated with the Peng-Robinson equation of state with the two-parameter van der Waals mixing rule. At the same time, the Henry's coefficient, partial molar enthalpy change and partial molar entropy change of CO2 during dissolution at different temperature were also calculated.展开更多
High-pressure vapor-liquid phase equilibrium data for carbon dioxide+ isopentanol were measured at tempera- tures of 313.2, 323.1, 333.5 and 343.4 K in the pressure range of 4.64 to 12.71 MPa in a variable-volume hig...High-pressure vapor-liquid phase equilibrium data for carbon dioxide+ isopentanol were measured at tempera- tures of 313.2, 323.1, 333.5 and 343.4 K in the pressure range of 4.64 to 12.71 MPa in a variable-volume high-pressure visual cell. The experimental data were well correlated with Peng-Robinson equation of state (PR-EOS) together with van der Waals-2 two-parameter mixing rule, and the binary interaction parameters were obtained. Henry coefficients and partial molar volumes of CO2 at infinite dilution were estimated based on Krichevsky-Kasarnovsky equation, and Henry coefficients increase with increasing temperature, however, partial molar volumes of CO2 at infinite dilution are negative and the magnitudes decrease with temperature.展开更多
基金financial support provided by Islamic Azad University of Mahshahr Branch,Iran
文摘In this paper,the polymer chain of rotator(PCOR) equation of state(EOS) was used together with an EOS/G^E mixing rule(MHV1) and the Wilson's equation as an excess-Gibbs-energy model in the proposed approach to extend the capability and improve the accuracy of the PCOR EOS for predicting the Henry's constant of solutions containing polymers.The results of the proposed method compared with two equation of state(van der Waals and GC-Flory) and three activity coefficient models(UNIFAC,UNIFAC-FV and Entropic-FV) indicated that the PCOR EOS/Wilson's equation provided more accurate results.The interaction parameters of Wilson's equation were fitted with Henry's constant experimental data and the property parameters of PCOR,a and b,were fitted with experimental volume data(Tait equation).As a result,the present work provided a simple and useful model for prediction of Henry's constant for polymer solutions.
文摘High-pressure vapor-liquid equilibrium data for the binary systems of methyl propionate+carbon dioxide and propyl propionate+carbon dioxide were measured at pressure from 1.00 MPa to 12.00 MPa and temperature in the range from 313 K to 373 K. Experimental results were correlated with the Peng-Robinson equation of state with the two-parameter van der Waals mixing rule. At the same time, the Henry's coefficient, partial molar enthalpy change and partial molar entropy change of CO2 during dissolution at different temperature were also calculated.
文摘High-pressure vapor-liquid phase equilibrium data for carbon dioxide+ isopentanol were measured at tempera- tures of 313.2, 323.1, 333.5 and 343.4 K in the pressure range of 4.64 to 12.71 MPa in a variable-volume high-pressure visual cell. The experimental data were well correlated with Peng-Robinson equation of state (PR-EOS) together with van der Waals-2 two-parameter mixing rule, and the binary interaction parameters were obtained. Henry coefficients and partial molar volumes of CO2 at infinite dilution were estimated based on Krichevsky-Kasarnovsky equation, and Henry coefficients increase with increasing temperature, however, partial molar volumes of CO2 at infinite dilution are negative and the magnitudes decrease with temperature.