Hepatic ischemia reperfusion injury (HIRI) is a clinical condition which may lead to cellular injury and organ dysfunction. The role of nitric oxide (NO) in HIRI is complicated and inconclusive. NO produced by endothe...Hepatic ischemia reperfusion injury (HIRI) is a clinical condition which may lead to cellular injury and organ dysfunction. The role of nitric oxide (NO) in HIRI is complicated and inconclusive. NO produced by endothelial nitric oxide synthase (eNOS) activation plays a protective role during early HIRI. But eNOS overexpression and the resulting excessive NO bioavailability can aggravate liver injury. NO induced by inducible nitric oxide synthase (iNOS) may have either a protective or a deleterious effect during the early phase of HIRI, but it may protect the liver during late HIRI. Here, we reviewed the latest findings on the role of NO during HIRI: (1) NO exerts a protective effect against HIRI by increasing NO bioavailability, downregulating p53 gene expression, decreasing inflammatory chemokines, reducing ROS via inhibiting the mitochondrial respiratory chain, activating sGC-GTP-cGMP signal pathway to reduce liver cell apoptosis, and regulating hepatic immune functions; (2) eNOS protects against HIRI by increasing NO levels, several eNOS/NO signal pathways (such as Akt-eNOS/NO, AMPK-eNOS/NO and HIF-1 alpha-eNOS/NO) participating in the anti-HIRI process, and inhibiting over-expression of eNOS also protects against HIRI; and (3) the inhibition of iNOS prevents HIRI. Thus, the adverse effects of NO should be avoided, but its positive effect in the clinical treatment of diseases associated with HIRI should be recognized.展开更多
The effects of hepatic ischemia/reperfusion (I/R) injuries on hepatocellular viability and store-operated calcium current (Isoc) in isolated rat hepatocytes and the effects of 2-APB on store-operated calcium current (...The effects of hepatic ischemia/reperfusion (I/R) injuries on hepatocellular viability and store-operated calcium current (Isoc) in isolated rat hepatocytes and the effects of 2-APB on store-operated calcium current (Isoc) in isolated rat hepatocytes after hepatic ischemia/reperfusion injuries were studied. Hepatic ischemia and reperfusion injury model was established and whole cell patch-clamp techniques were used to investigate the effects of 2-APB on Isoc. The results showed that ischemia/reperfusion injuries could significantly reduce hepatocellular viability and further increase Isoc in hepatocytes and 2-APB (20, 40, 60, 80, 100 μmol/L) produced a concentration-dependent decrease of Isoc with IC 50 value of 64.63±10.56 μmol/L (n=8). It was concluded that ischemia/reperfusion injuries could reduce hepatocellular viability, probably through increased Isoc in hepatocytes and 2-APB had a protective effect on ischemia/reperfusion-induced liver injury, probably though inhibiting Isoc.展开更多
AIM: To evaluate the protective effect of NF-kB decoy oligodeoxynucleotides (ODNs) on ischemia/reperfusion (I/R) injury in rat liver graft. METHODS: Orthotopic syngeneic rat liver transplantation was performed w...AIM: To evaluate the protective effect of NF-kB decoy oligodeoxynucleotides (ODNs) on ischemia/reperfusion (I/R) injury in rat liver graft. METHODS: Orthotopic syngeneic rat liver transplantation was performed with 3 h of cold preservation of liver graft in University of Wisconsin solution containing phosphorothioated double-stranded NF-kB decoy ODNs or scrambled ODNs. NF-kB decoy ODNs or scrambled ODNs were injected intravenously into donor and recipient rats 6 and 1 h before operation, respectively. Recipients were killed 0 to 16 h after liver graft reperfusion. NF-kB activity in the liver graft was analyzed by electrophoretic mobility shift assay (EMSA). Hepatic mRNA expression of TNF-α, IFN-γ and intercellular adhesion molecule-1 (ICAM-1) were determined by semiquantitative RT-PCR. Serum levels of TNF-α and IFN-γ were measured by enzyme-linked immunosorbent assays (ELISA). Serum level of alanine transaminase (ALT) was measured using a diagnostic kit. Liver graft myeloperoxidase (MPO) content was assessed. RESULTS: NF-kB activation in liver graft was induced in a time-dependent manner, and NF-kB remained activated for 16 h after graft reperfusion. NF-kB activation in liver graft was significant at 2 to 8 h and slightly decreased at 16 h after graft reperfusion. Administration of NF-kB decoy ODNs significantly suppressed NF-kB activation as well as mRNA expression of TNF-α, IFN-γ, and ICAM-1 in the liver graft. The hepatic NF-kB DNA binding activity [presented as integral optical density (IOD) value] in the NF-kB decoy ODNs treatment group rat was significantly lower than that of the I/R group rat (2.16±0.78 vs 36.78 ±6.35 and 3.06±0.84 vs 47.62± 8.71 for IOD value after 4 and 8 h of reperfusion, respectively, P〈0.001). The hepatic mRNA expression level of TNF-α, IFN-γ and ICAM-1 rpresented as percent of β-actin mRNA (%)] in the NF-kB decoy ODNs treatment group rat was significantly lower than that of the I/R group rat (8.31 ±3.48 vs 46.37±10.65 and 7.46± 3.72 vs 74.82±12.25 for hepatic TNF-α mRNA, 5.58±2.16 vs 50.46±9.35 and 6.47±2.53 vs 69.72±13.41 for hepatic IFN-γ mRNA, 6.79 ±2.83 vs 46.23±8.74 and 5.28±2.46 vs 67.44±10.12 for hepatic ICAM-1 mRNA expression after 4 and 8 h of reperfusion, respectively, P〈0.001). Administration of NF-kB decoy ODNs almost completely abolished the increase of serum level of TNF-α and IFN-γ induced by hepatic ischemia/reperfusion, the serum level (pg/mL) of TNF-α and in the NF-kB decoy ODNs treatment group rat was significantly lower than that of the I/R group rat (42.7±13.6 vs 176.7±15.8 and 48.4±15.1 vs 216.8±17.6 for TNF-α level, 31.5±12.1 vs 102.1±14.5 and 40.2±13.5 vs 118.6±16.7 for IFN-γ level after 4 and 8 h of reperfusion, respectively, P〈0.001). Liver graft neutrophil recruitment indicated by MPO content and hepatocellular injury indicated by serum ALT level were significantly reduced by NF-kB decoy ODNs, the hepatic MPO content (A655) and serum ALT level (IU/L) in the NF-kB decoy ODNs treatment group rat was significantly lower than that of the I/R group rat (0.17±0.07 vs 1.12±0.25 and 0.46±0.17 vs 1.46±0.32 for hepatic MPO content, 71.7±33.2 vs 286.1±49.6 and 84.3±39.7 vs 467.8±62.3 for ALT level after 4 and 8 h of reperfusion, respectively, P〈0.001). CONCLUSION: The data suggest that NF-kB decoy ODNs protects against I/R injury in liver graft by suppressing NF-kB activation and subsequent expression of proinflammatory mediators.展开更多
AIM: TO investigate the protective effects and possible mechanisms of Veratrum nigrum L. var. ussuriense Nakai alkaloids (VnA) on hepatic ischemia/reperfusion (I/R) injury in rats. METHODS: Forty male Wistar rat...AIM: TO investigate the protective effects and possible mechanisms of Veratrum nigrum L. var. ussuriense Nakai alkaloids (VnA) on hepatic ischemia/reperfusion (I/R) injury in rats. METHODS: Forty male Wistar rats were randomly divided into four experimental groups (n = 10 in each): (A) Control group (the sham operation group); (8) I/R group (pretreated with normal saline); (C) Small-dose (10 μg/kg) VnA pretreatment group; (D) Large-dose (20 μg/kg) VnA pretreatment group. Hepatic ischemia/ reperfusion (Hepatic I/R) was induced by occlusion of the portal vein and the hepatic artery for 90 min, followed by reperfusion for 240 min. The pretreatment groups were administered with VnA intraperitoneally, 30 min before surgery, while the control group and I/R group were given equal volumes of normal saline. Superoxide dismutase (SOD) activity, myeloperoxidase (MPO) activity and nitric oxide (NO) content in the liver tissue at the end of reperfusion were determined and liver function was measured. The expression of intercellular adhesion molecule-1 (ICAM-1) and E-selectin (ES) were detected by immunohistochemical examinations and Western blot analyses. RESULTS: The results showed that hepatic I/R elicited a significant increase in the plasma levels of alanine aminotransferase (ALT: 74.53 ± 2.58 IU/L vs 1512.54 ± 200.76 IU/L, P 〈 0.01) and lactic dehydrogenase (LDH: 473.48 ± 52.17 IU/L vs 5821.53 ± 163.69 IU/L, P 〈 0.01), as well as the levels of MPO (1.97 ± 0.11 U/g vs 2.57 ± 0.13 U/g, P 〈 0.01) and NO (69.37 ± 1.52 μmol/g protein vs 78.39 ± 2.28 μmol/g protein, P 〈 0.01) in the liver tissue, all of which were reduced by pretreatment with VnA, respectively (ALT: 1512.54 ± 200.76 IU/L vs 977.93 ± 89.62 IU/L, 909.81 ± 132.76 IU/L, P 〈 0.01, P 〈 0.01; LDH: 5821.53 ± 163.69 IU/L vs 3015.44 ± 253.01 IU/L, 2448.75 ± 169.4 IU/L, P 〈 0.01, P 〈 0.01; MPO: 2.57 ± 0.13 U/g vs 2.13 ± 0.13 U/g, 2.07 ± 0.05 U/g, P 〈 0.01, P 〈 0.01; NO: 78.39 ± 2.28 μmol/g protein vs 71.11 ± 1.73 μmol/g protein, 68.58 ± 1.95 μmol/g protein, P 〈 0.05, P 〈 0.01). The activity of SOD (361.75 ± 16.22 U/rag protein vs 263.19 ± 12.10 U/rag protein, P 〈 0.01) in the liver tissue was decreased after I/R, which was enhanced by VnA pretreatment (263.19 ± 12.10 U/rag protein vs 299.40 ± 10.80 U/rag protein, 302.09 + 14.80 U/rag protein, P 〈 0.05, P 〈 0.05). Simultaneously, the histological evidence of liver hemorrhage, polymorphonuclear neutrophil infiltration and the overexpression of ICAM-1 and E-selectin in the liver tissue were observed, all of which were attenuated in the VnA pretreated groups. CONCLUSION: The results demonstrate that VnA pretreatment exerts significant protection against hepatic I/R injury in rats. The protective effects are possibly associated with enhancement of antioxidant capacity, reduction of inflammatory responses and suppressed expression of ICAM-1 and E-selectin.展开更多
Hepatic ischemia/reperfusion injury(HIRI)is a common pathophysiological condition occurring during or after liver resection and transplantation,leading to hepatic viability impairment and functional deterioration.Rece...Hepatic ischemia/reperfusion injury(HIRI)is a common pathophysiological condition occurring during or after liver resection and transplantation,leading to hepatic viability impairment and functional deterioration.Recently,ferroptosis,a newly recognized form of programmed cell death,has been implicated in IRI.Rehmanniae Radix Praeparata(RRP),extensively used in Chinese herbal medicine for its hepatoprotective,anti-inflammatory,and antioxidant properties,presents a potential therapeutic approach.However,the mechanisms by which RRP mitigates HIRI,particularly through the regulation of ferroptosis,remain unclear.In this study,we developed a HIRI mouse model and monocrotaline(MCT)-and erastin-induced in vitro hepatocyte injury models.We conducted whole-genome transcriptome analysis to elucidate the protective effects and mechanisms of RRP on HIRI.The RRP aqueous extract was characterized by the presence of acteoside,rehmannioside D,and 5-hydroxymethylfurfural.Our results demonstrate that the RRP aqueous extract ameliorated oxidative stress,reduced intracellular iron accumulation,and attenuated HIRI-induced liver damage.Additionally,RRP significantly inhibited hepatocyte death by restoring intracellular iron homeostasis both in vivo and in vitro.Mechanistically,the RRP aqueous extract reduced intrahepatocellular iron accumulation by inhibiting ZIP14-mediated iron uptake,promoting hepcidin-and ferroportin-mediated iron efflux,and ameliorating mitochondrial iron aggregation through upregulation of Cisd1 expression.Moreover,siRNA-mediated inhibition of hamp synergistically enhanced the RRP aqueous extract's inhibitory effect on ferroptosis.In conclusion,our study elucidates the mechanisms by which RRP aqueous extracts alleviate HIRI,highlighting the restoration of iron metabolic balance.These findings position RRP as a promising candidate for clinical intervention in HIRI treatment.展开更多
Hepatic ischemia/reperfusion injury(HIRI) is a serious complication that occurs following shock and/or liver surgery. Gut microbiota and their metabolites are key upstream modulators of development of liver injury. He...Hepatic ischemia/reperfusion injury(HIRI) is a serious complication that occurs following shock and/or liver surgery. Gut microbiota and their metabolites are key upstream modulators of development of liver injury. Herein, we investigated the potential contribution of gut microbes to HIRI.Ischemia/reperfusion surgery was performed to establish a murine model of HIRI. 16 S r RNA gene sequencing and metabolomics were used for microbial analysis. Transcriptomics and proteomics analysis were employed to study the host cell responses. Our results establish HIRI was significantly increased when surgery occurred in the evening(ZT12, 20:00) when compared with the morning(ZT0, 08:00);however, antibiotic pretreatment reduced this diurnal variation. The abundance of a microbial metabolite3,4-dihydroxyphenylpropionic acid was significantly higher in ZT0 when compared with ZT12 in the gut and this compound significantly protected mice against HIRI. Furthermore, 3,4-dihydroxyphenylpropionic acid suppressed the macrophage pro-inflammatory response in vivo and in vitro. This metabolite inhibits histone deacetylase activity by reducing its phosphorylation. Histone deacetylase inhibition suppressed macrophage pro-inflammatory activation and diminished the diurnal variation of HIRI. Our findings revealed a novel protective microbial metabolite against HIRI in mice. The potential underlying mechanism was at least in part, via 3,4-dihydroxyphenylpropionic acid-dependent immune regulation and histone deacetylase(HDAC) inhibition in macrophages.展开更多
Background and Aims:Hepatic ischemia/reperfusion(I/R)injury has become an inevitable issue during liver transplantation,with no effective treatments available.However,peptide drugs provide promising regimens for the t...Background and Aims:Hepatic ischemia/reperfusion(I/R)injury has become an inevitable issue during liver transplantation,with no effective treatments available.However,peptide drugs provide promising regimens for the treatment of this injury and peptidomics has gradually attracted increasing attention.This study was designed to analyze the spectrum of peptides in injured livers and explore the potential beneficial peptides involved in I/R injury.Methods:C57BL/6 mice were used to establish a liver I/R injury animal model.Changes in peptide profiles in I/R-injured livers were analyzed by mass spectrometry,and the functions of the identified peptides were predicted by bioinformatics.AML12 cells were used to simulate hepatic I/R injury in vitro.After treatment with candidate liver-derived peptides(LDPs)1–10,the cells were collected at various reperfusion times for further study.Results:Our preliminary study demonstrated that 6 h of reperfusion caused the most liver I/R injury.Peptidomic results suggested that 10 down-regulated peptides were most likely to alleviate I/R injury by supporting mitochondrial function.Most importantly,a novel peptide,LDP2,was identified that alleviated I/R injury of AML12 cells.It increased cell viability and reduced the expression of inflammation-and apoptosis-related proteins.In addition,LDP2 inhibited the expression of proteins related to autophagy.Conclusions:Investigation of changes in the profiles of peptides in I/R-injured livers led to identification of a novel peptide,LDP2 with potential function in liver protection by inhibiting inflammation,apoptosis,and autophagy.展开更多
基金Supported by National Natural Science Foundation of China,No.81260504,No.81660151 and No.81660751Science Foundation of Science Commission of Jiangxi Province,China,No.20161BBG70067School Teaching Reform Fund of Nanchang University,No.NCUJGLX-14-1-111
文摘Hepatic ischemia reperfusion injury (HIRI) is a clinical condition which may lead to cellular injury and organ dysfunction. The role of nitric oxide (NO) in HIRI is complicated and inconclusive. NO produced by endothelial nitric oxide synthase (eNOS) activation plays a protective role during early HIRI. But eNOS overexpression and the resulting excessive NO bioavailability can aggravate liver injury. NO induced by inducible nitric oxide synthase (iNOS) may have either a protective or a deleterious effect during the early phase of HIRI, but it may protect the liver during late HIRI. Here, we reviewed the latest findings on the role of NO during HIRI: (1) NO exerts a protective effect against HIRI by increasing NO bioavailability, downregulating p53 gene expression, decreasing inflammatory chemokines, reducing ROS via inhibiting the mitochondrial respiratory chain, activating sGC-GTP-cGMP signal pathway to reduce liver cell apoptosis, and regulating hepatic immune functions; (2) eNOS protects against HIRI by increasing NO levels, several eNOS/NO signal pathways (such as Akt-eNOS/NO, AMPK-eNOS/NO and HIF-1 alpha-eNOS/NO) participating in the anti-HIRI process, and inhibiting over-expression of eNOS also protects against HIRI; and (3) the inhibition of iNOS prevents HIRI. Thus, the adverse effects of NO should be avoided, but its positive effect in the clinical treatment of diseases associated with HIRI should be recognized.
基金This project was supported by the National Natural Sci ence Foundation of China (No. 30270532), the Trans Cen tury Excellent Talent Development Plan Fund of Ministry ofEducation of China (Official Letter No. 2002 48) and Shu guang Program Project of Shanghai Educational Committee(No. 02SG20).
文摘The effects of hepatic ischemia/reperfusion (I/R) injuries on hepatocellular viability and store-operated calcium current (Isoc) in isolated rat hepatocytes and the effects of 2-APB on store-operated calcium current (Isoc) in isolated rat hepatocytes after hepatic ischemia/reperfusion injuries were studied. Hepatic ischemia and reperfusion injury model was established and whole cell patch-clamp techniques were used to investigate the effects of 2-APB on Isoc. The results showed that ischemia/reperfusion injuries could significantly reduce hepatocellular viability and further increase Isoc in hepatocytes and 2-APB (20, 40, 60, 80, 100 μmol/L) produced a concentration-dependent decrease of Isoc with IC 50 value of 64.63±10.56 μmol/L (n=8). It was concluded that ischemia/reperfusion injuries could reduce hepatocellular viability, probably through increased Isoc in hepatocytes and 2-APB had a protective effect on ischemia/reperfusion-induced liver injury, probably though inhibiting Isoc.
基金Supported by grants from China Postdoctoral Science Foundation,No. 2003033531
文摘AIM: To evaluate the protective effect of NF-kB decoy oligodeoxynucleotides (ODNs) on ischemia/reperfusion (I/R) injury in rat liver graft. METHODS: Orthotopic syngeneic rat liver transplantation was performed with 3 h of cold preservation of liver graft in University of Wisconsin solution containing phosphorothioated double-stranded NF-kB decoy ODNs or scrambled ODNs. NF-kB decoy ODNs or scrambled ODNs were injected intravenously into donor and recipient rats 6 and 1 h before operation, respectively. Recipients were killed 0 to 16 h after liver graft reperfusion. NF-kB activity in the liver graft was analyzed by electrophoretic mobility shift assay (EMSA). Hepatic mRNA expression of TNF-α, IFN-γ and intercellular adhesion molecule-1 (ICAM-1) were determined by semiquantitative RT-PCR. Serum levels of TNF-α and IFN-γ were measured by enzyme-linked immunosorbent assays (ELISA). Serum level of alanine transaminase (ALT) was measured using a diagnostic kit. Liver graft myeloperoxidase (MPO) content was assessed. RESULTS: NF-kB activation in liver graft was induced in a time-dependent manner, and NF-kB remained activated for 16 h after graft reperfusion. NF-kB activation in liver graft was significant at 2 to 8 h and slightly decreased at 16 h after graft reperfusion. Administration of NF-kB decoy ODNs significantly suppressed NF-kB activation as well as mRNA expression of TNF-α, IFN-γ, and ICAM-1 in the liver graft. The hepatic NF-kB DNA binding activity [presented as integral optical density (IOD) value] in the NF-kB decoy ODNs treatment group rat was significantly lower than that of the I/R group rat (2.16±0.78 vs 36.78 ±6.35 and 3.06±0.84 vs 47.62± 8.71 for IOD value after 4 and 8 h of reperfusion, respectively, P〈0.001). The hepatic mRNA expression level of TNF-α, IFN-γ and ICAM-1 rpresented as percent of β-actin mRNA (%)] in the NF-kB decoy ODNs treatment group rat was significantly lower than that of the I/R group rat (8.31 ±3.48 vs 46.37±10.65 and 7.46± 3.72 vs 74.82±12.25 for hepatic TNF-α mRNA, 5.58±2.16 vs 50.46±9.35 and 6.47±2.53 vs 69.72±13.41 for hepatic IFN-γ mRNA, 6.79 ±2.83 vs 46.23±8.74 and 5.28±2.46 vs 67.44±10.12 for hepatic ICAM-1 mRNA expression after 4 and 8 h of reperfusion, respectively, P〈0.001). Administration of NF-kB decoy ODNs almost completely abolished the increase of serum level of TNF-α and IFN-γ induced by hepatic ischemia/reperfusion, the serum level (pg/mL) of TNF-α and in the NF-kB decoy ODNs treatment group rat was significantly lower than that of the I/R group rat (42.7±13.6 vs 176.7±15.8 and 48.4±15.1 vs 216.8±17.6 for TNF-α level, 31.5±12.1 vs 102.1±14.5 and 40.2±13.5 vs 118.6±16.7 for IFN-γ level after 4 and 8 h of reperfusion, respectively, P〈0.001). Liver graft neutrophil recruitment indicated by MPO content and hepatocellular injury indicated by serum ALT level were significantly reduced by NF-kB decoy ODNs, the hepatic MPO content (A655) and serum ALT level (IU/L) in the NF-kB decoy ODNs treatment group rat was significantly lower than that of the I/R group rat (0.17±0.07 vs 1.12±0.25 and 0.46±0.17 vs 1.46±0.32 for hepatic MPO content, 71.7±33.2 vs 286.1±49.6 and 84.3±39.7 vs 467.8±62.3 for ALT level after 4 and 8 h of reperfusion, respectively, P〈0.001). CONCLUSION: The data suggest that NF-kB decoy ODNs protects against I/R injury in liver graft by suppressing NF-kB activation and subsequent expression of proinflammatory mediators.
文摘AIM: TO investigate the protective effects and possible mechanisms of Veratrum nigrum L. var. ussuriense Nakai alkaloids (VnA) on hepatic ischemia/reperfusion (I/R) injury in rats. METHODS: Forty male Wistar rats were randomly divided into four experimental groups (n = 10 in each): (A) Control group (the sham operation group); (8) I/R group (pretreated with normal saline); (C) Small-dose (10 μg/kg) VnA pretreatment group; (D) Large-dose (20 μg/kg) VnA pretreatment group. Hepatic ischemia/ reperfusion (Hepatic I/R) was induced by occlusion of the portal vein and the hepatic artery for 90 min, followed by reperfusion for 240 min. The pretreatment groups were administered with VnA intraperitoneally, 30 min before surgery, while the control group and I/R group were given equal volumes of normal saline. Superoxide dismutase (SOD) activity, myeloperoxidase (MPO) activity and nitric oxide (NO) content in the liver tissue at the end of reperfusion were determined and liver function was measured. The expression of intercellular adhesion molecule-1 (ICAM-1) and E-selectin (ES) were detected by immunohistochemical examinations and Western blot analyses. RESULTS: The results showed that hepatic I/R elicited a significant increase in the plasma levels of alanine aminotransferase (ALT: 74.53 ± 2.58 IU/L vs 1512.54 ± 200.76 IU/L, P 〈 0.01) and lactic dehydrogenase (LDH: 473.48 ± 52.17 IU/L vs 5821.53 ± 163.69 IU/L, P 〈 0.01), as well as the levels of MPO (1.97 ± 0.11 U/g vs 2.57 ± 0.13 U/g, P 〈 0.01) and NO (69.37 ± 1.52 μmol/g protein vs 78.39 ± 2.28 μmol/g protein, P 〈 0.01) in the liver tissue, all of which were reduced by pretreatment with VnA, respectively (ALT: 1512.54 ± 200.76 IU/L vs 977.93 ± 89.62 IU/L, 909.81 ± 132.76 IU/L, P 〈 0.01, P 〈 0.01; LDH: 5821.53 ± 163.69 IU/L vs 3015.44 ± 253.01 IU/L, 2448.75 ± 169.4 IU/L, P 〈 0.01, P 〈 0.01; MPO: 2.57 ± 0.13 U/g vs 2.13 ± 0.13 U/g, 2.07 ± 0.05 U/g, P 〈 0.01, P 〈 0.01; NO: 78.39 ± 2.28 μmol/g protein vs 71.11 ± 1.73 μmol/g protein, 68.58 ± 1.95 μmol/g protein, P 〈 0.05, P 〈 0.01). The activity of SOD (361.75 ± 16.22 U/rag protein vs 263.19 ± 12.10 U/rag protein, P 〈 0.01) in the liver tissue was decreased after I/R, which was enhanced by VnA pretreatment (263.19 ± 12.10 U/rag protein vs 299.40 ± 10.80 U/rag protein, 302.09 + 14.80 U/rag protein, P 〈 0.05, P 〈 0.05). Simultaneously, the histological evidence of liver hemorrhage, polymorphonuclear neutrophil infiltration and the overexpression of ICAM-1 and E-selectin in the liver tissue were observed, all of which were attenuated in the VnA pretreated groups. CONCLUSION: The results demonstrate that VnA pretreatment exerts significant protection against hepatic I/R injury in rats. The protective effects are possibly associated with enhancement of antioxidant capacity, reduction of inflammatory responses and suppressed expression of ICAM-1 and E-selectin.
基金supported by Beijing Nova Program(No.Z201100006820025)the National Natural Science Foundation of China(No.82274186)+3 种基金the Fundamental Research Funds for the Central Universities(No.2023-JYB-JBZD-046)the National High-Level Talents Special Support Program to LI Xiaojiaoyanthe National Key Research and Development Program on Modernization of Traditional Chinese Medicine(No.2022YFC3502100)Beijing Municipal Science&Technology Commission(No.7212174)。
文摘Hepatic ischemia/reperfusion injury(HIRI)is a common pathophysiological condition occurring during or after liver resection and transplantation,leading to hepatic viability impairment and functional deterioration.Recently,ferroptosis,a newly recognized form of programmed cell death,has been implicated in IRI.Rehmanniae Radix Praeparata(RRP),extensively used in Chinese herbal medicine for its hepatoprotective,anti-inflammatory,and antioxidant properties,presents a potential therapeutic approach.However,the mechanisms by which RRP mitigates HIRI,particularly through the regulation of ferroptosis,remain unclear.In this study,we developed a HIRI mouse model and monocrotaline(MCT)-and erastin-induced in vitro hepatocyte injury models.We conducted whole-genome transcriptome analysis to elucidate the protective effects and mechanisms of RRP on HIRI.The RRP aqueous extract was characterized by the presence of acteoside,rehmannioside D,and 5-hydroxymethylfurfural.Our results demonstrate that the RRP aqueous extract ameliorated oxidative stress,reduced intracellular iron accumulation,and attenuated HIRI-induced liver damage.Additionally,RRP significantly inhibited hepatocyte death by restoring intracellular iron homeostasis both in vivo and in vitro.Mechanistically,the RRP aqueous extract reduced intrahepatocellular iron accumulation by inhibiting ZIP14-mediated iron uptake,promoting hepcidin-and ferroportin-mediated iron efflux,and ameliorating mitochondrial iron aggregation through upregulation of Cisd1 expression.Moreover,siRNA-mediated inhibition of hamp synergistically enhanced the RRP aqueous extract's inhibitory effect on ferroptosis.In conclusion,our study elucidates the mechanisms by which RRP aqueous extracts alleviate HIRI,highlighting the restoration of iron metabolic balance.These findings position RRP as a promising candidate for clinical intervention in HIRI treatment.
基金supported by the National Natural Science Foundation of China(81873926,32071124)Natural Science Funds for Distinguished Young Scholar of Guangdong province grant(2016A030306043,China)to Peng Chen+2 种基金Grants from the NSFCGuangdong Joint Foundation of China(U1601225)Natural Science Foundation of China(81971895)Special Support Plan for Outstanding Talents of Guangdong Province(2019JC05Y340,China)to Yong Jiang。
文摘Hepatic ischemia/reperfusion injury(HIRI) is a serious complication that occurs following shock and/or liver surgery. Gut microbiota and their metabolites are key upstream modulators of development of liver injury. Herein, we investigated the potential contribution of gut microbes to HIRI.Ischemia/reperfusion surgery was performed to establish a murine model of HIRI. 16 S r RNA gene sequencing and metabolomics were used for microbial analysis. Transcriptomics and proteomics analysis were employed to study the host cell responses. Our results establish HIRI was significantly increased when surgery occurred in the evening(ZT12, 20:00) when compared with the morning(ZT0, 08:00);however, antibiotic pretreatment reduced this diurnal variation. The abundance of a microbial metabolite3,4-dihydroxyphenylpropionic acid was significantly higher in ZT0 when compared with ZT12 in the gut and this compound significantly protected mice against HIRI. Furthermore, 3,4-dihydroxyphenylpropionic acid suppressed the macrophage pro-inflammatory response in vivo and in vitro. This metabolite inhibits histone deacetylase activity by reducing its phosphorylation. Histone deacetylase inhibition suppressed macrophage pro-inflammatory activation and diminished the diurnal variation of HIRI. Our findings revealed a novel protective microbial metabolite against HIRI in mice. The potential underlying mechanism was at least in part, via 3,4-dihydroxyphenylpropionic acid-dependent immune regulation and histone deacetylase(HDAC) inhibition in macrophages.
基金supported by National Natural Science Foundation of China (82070634,82002495)Shanghai Natural Science Foundation (20ZR1451700)+3 种基金SJTU CrossDisciplinary Research Fund in Medicine and Engineering (YG2022QN117)Shanghai Key Medical Specialty Fund (ZK2019A15)Research Fund of Key Laboratory for Translational Research and Innovative Therapeutics of Gastrointestinal Oncology (ZDSYS-2021-04)National Key Research and Development Program (2021YFC2701903).
文摘Background and Aims:Hepatic ischemia/reperfusion(I/R)injury has become an inevitable issue during liver transplantation,with no effective treatments available.However,peptide drugs provide promising regimens for the treatment of this injury and peptidomics has gradually attracted increasing attention.This study was designed to analyze the spectrum of peptides in injured livers and explore the potential beneficial peptides involved in I/R injury.Methods:C57BL/6 mice were used to establish a liver I/R injury animal model.Changes in peptide profiles in I/R-injured livers were analyzed by mass spectrometry,and the functions of the identified peptides were predicted by bioinformatics.AML12 cells were used to simulate hepatic I/R injury in vitro.After treatment with candidate liver-derived peptides(LDPs)1–10,the cells were collected at various reperfusion times for further study.Results:Our preliminary study demonstrated that 6 h of reperfusion caused the most liver I/R injury.Peptidomic results suggested that 10 down-regulated peptides were most likely to alleviate I/R injury by supporting mitochondrial function.Most importantly,a novel peptide,LDP2,was identified that alleviated I/R injury of AML12 cells.It increased cell viability and reduced the expression of inflammation-and apoptosis-related proteins.In addition,LDP2 inhibited the expression of proteins related to autophagy.Conclusions:Investigation of changes in the profiles of peptides in I/R-injured livers led to identification of a novel peptide,LDP2 with potential function in liver protection by inhibiting inflammation,apoptosis,and autophagy.