Fulminant hepatitis is a serious and complex disease with high mortality. In recent years, hepatocyte growth-promoting factors (pHGF), developed on the basis of fetal liver cell injection, has been jointly used as a c...Fulminant hepatitis is a serious and complex disease with high mortality. In recent years, hepatocyte growth-promoting factors (pHGF), developed on the basis of fetal liver cell injection, has been jointly used as a comprehensive therapy for fulminant hepatitis. The following is a report of the results of using pHGF for the treatment of 1687 cases of fulminant hepatitis (with 1196 controls).展开更多
AIM:To explore the effects of hepatocyte growth factor(HGF)on retinal pigment epithelium(RPE)cell behaviors.METHODS:The human adult retinal pigment epithelial cell line-19(ARPE-19)were treated by HGF or mesenchymalepi...AIM:To explore the effects of hepatocyte growth factor(HGF)on retinal pigment epithelium(RPE)cell behaviors.METHODS:The human adult retinal pigment epithelial cell line-19(ARPE-19)were treated by HGF or mesenchymalepithelial transition factor(MET)inhibitor SU11274 in vitro.Cell viability was detected by a Cell Counting Kit-8 assay.Cell proliferation and motility was detected by a bromodeoxyuridine incorporation assay and a wound healing assay,respectively.The expression levels of MET,phosphorylated MET,protein kinase B(AKT),and phosphorylated AKT proteins were determined by Western blot assay.The MET and phosphorylated MET proteins were also determined by immunofluorescence assay.RESULTS:HGF increased ARPE-19 cells’viability,proliferation and migration,and induced an increase of phosphorylated MET and phosphorylated AKT proteins.SU11274 significantly reduced cell viability,proliferation,and migration and decreased the expression of MET and AKT proteins.SU11274 suppressed HGF-induced increase of viability,proliferation,and migration in ARPE-19 cells.Additionally,SU11274 also blocked HGF-induced phosphorylation of MET and AKT proteins.CONCLUSION:HGF enhances cellular viability,proliferation,and migration in RPE cells through the MET/AKT signaling pathway,whereas this enhancement is suppressed by the MET inhibitor SU11274.HGF-induced MET/AKT signaling might be a vital contributor of RPE cells survival.展开更多
Hepatocyte growth factor(HGF)and its receptor,c-Met,play important roles in the occurrence,development,and treatment of gastric cancer(GC).This review explored the function of the HGF/c-Met signaling pathway in GC and...Hepatocyte growth factor(HGF)and its receptor,c-Met,play important roles in the occurrence,development,and treatment of gastric cancer(GC).This review explored the function of the HGF/c-Met signaling pathway in GC and its potential targeted therapeutic mechanisms.As one of the most common malignant tumors worldwide,GC has a complex pathogenesis and limited therapeutic options.Therefore,a thorough understanding of the molecular mechanism of GC is very important for the development of new therapeutic methods.The HGF/c-Met signaling pathway plays an important role in the proliferation,migration,and invasion of GC cells and has become a new therapeutic target.This review summarizes the current research progress on the role of HGF/c-Met in GC and discusses targeted therapeutic strategies targeting this signaling pathway,providing new ideas and directions for the treatment of GC.展开更多
BACKGROUND Atherosclerosis(AS),a chronic inflammatory disease of blood vessels,is a major contributor to cardiovascular disease.Dental pulp stem cells(DPSCs)are capable of exerting immunomodulatory and anti-inflammato...BACKGROUND Atherosclerosis(AS),a chronic inflammatory disease of blood vessels,is a major contributor to cardiovascular disease.Dental pulp stem cells(DPSCs)are capable of exerting immunomodulatory and anti-inflammatory effects by secreting cytokines and exosomes and are widely used to treat autoimmune and inflam-mation-related diseases.Hepatocyte growth factor(HGF)is a pleiotropic cytokine that plays a key role in many inflammatory and autoimmune diseases.AIM To modify DPSCs with HGF(DPSC-HGF)and evaluate the therapeutic effect of DPSC-HGF on AS using an apolipoprotein E-knockout(ApoE-/-)mouse model and an in vitro cellular model.METHODS ApoE-/-mice were fed with a high-fat diet(HFD)for 12 wk and injected with DPSC-HGF or Ad-Null modified DPSCs(DPSC-Null)through tail vein at weeks 4,7,and 11,respectively,and the therapeutic efficacy and mechanisms were analyzed by histopathology,flow cytometry,lipid and glucose measurements,real-time reverse transcription polymerase chain reaction(RT-PCR),and enzyme-linked immunosorbent assay at the different time points of the experiment.An in vitro inflammatory cell model was established by using RAW264.7 cells and human aortic endothelial cells(HAOECs),and indirect co-cultured with supernatant of DPSC-Null(DPSC-Null-CM)or DPSC-HGF-CM,and the effect and mechanisms were analyzed by flow cytometry,RT-PCR and western blot.Nuclear factor-κB(NF-κB)activators and inhibitors were also used to validate the related signaling pathways.RESULTS DPSC-Null and DPSC-HGF treatments decreased the area of atherosclerotic plaques and reduced the expression of inflammatory factors,and the percentage of macrophages in the aorta,and DPSC-HGF treatment had more pronounced effects.DPSCs treatment had no effect on serum lipoprotein levels.The FACS results showed that DPSCs treatment reduced the percentages of monocytes,neutrophils,and M1 macrophages in the peripheral blood and spleen.DPSC-Null-CM and DPSC-HGF-CM reduced adhesion molecule expression in tumor necrosis factor-αstimulated HAOECs and regulated M1 polarization and inflammatory factor expression in lipopolysaccharide-induced RAW264.7 cells by inhibiting the NF-κB signaling pathway.CONCLUSION This study suggested that DPSC-HGF could more effectively ameliorate AS in ApoE-/-mice on a HFD,and could be of greater value in stem cell-based treatments for AS.展开更多
BACKGROUND Pulmonary fibrosis is one of the main reasons for the high mortality rate among acute respiratory distress syndrome(ARDS)patients.Mesenchymal stromal cell-derived microvesicles(MSC-MVs)have been shown to ex...BACKGROUND Pulmonary fibrosis is one of the main reasons for the high mortality rate among acute respiratory distress syndrome(ARDS)patients.Mesenchymal stromal cell-derived microvesicles(MSC-MVs)have been shown to exert antifibrotic effects in lung diseases.AIM To investigate the effects and mechanisms of MSC-MVs on pulmonary fibrosis in ARDS mouse models.METHODS MSC-MVs with low hepatocyte growth factor(HGF)expression(siHGF-MSC-MVs)were obtained via lentivirus transfection and used to establish the ARDS pulmonary fibrosis mouse model.Following intubation,respiratory mechanics-related indicators were measured via an experimental small animal lung function tester.Homing of MSC-MVs in lung tissues was investigated by near-infrared live imaging.Immunohistochemical,western blotting,ELISA and other methods were used to detect expression of pulmonary fibrosis-related proteins and to compare effects on pulmonary fibrosis and fibrosis-related indicators.RESULTS The MSC-MVs gradually migrated and homed to damaged lung tissues in the ARDS model mice.Treatment with MSC-MVs significantly reduced lung injury and pulmonary fibrosis scores.However,low expression of HGF(siHGF-MSC-MVs)significantly inhibited the effects of MSC-MVs(P<0.05).Compared with the ARDS pulmonary fibrosis group,the MSC-MVs group exhibited suppressed expression of type I collagen antigen,type III collagen antigen,and the proteins transforming growth factor-βandα-smooth muscle actin,whereas the siHGF-MVs group exhibited significantly increased expression of these proteins.In addition,pulmonary compliance and the pressure of oxygen/oxygen inhalation ratio were significantly lower in the MSC-MVs group,and the effects of the MSC-MVs were significantly inhibited by low HGF expression(all P<0.05).CONCLUSION MSC-MVs improved lung ventilation functions and inhibited pulmonary fibrosis in ARDS mice partly via HGF mRNA transfer.展开更多
Objective:The aim of this study is to investigate the effects of Hepatocyte Growth Factor(HGF)on the expression levels of IL-8,TNF-α,IL-4,and IL-21 in mice with liver injury induced by CCL_(4).Methods:An acute liver ...Objective:The aim of this study is to investigate the effects of Hepatocyte Growth Factor(HGF)on the expression levels of IL-8,TNF-α,IL-4,and IL-21 in mice with liver injury induced by CCL_(4).Methods:An acute liver injury mouse model was established using CCL_(4),and hepatocytes and white blood cells were separated by gradient density centrifugation.Different concentrations of HGF were added in vitro,and the expression levels of cytokines were detected using ELISA.Results:In the in vivo injury model,the hepatocyte experiment results showed that the expression level of IL-8 was reduced in the 10 ng/mL HGF group compared to the injured hepatocyte group(P<0.05),and increased in the 50 ng/mL HGF group compared to the 10 ng/mL HGF group(P<0.05).For IL-4,the expression levels were reduced in both the 25 ng/mL HGF group(P<0.05)and the 50 ng/mL HGF group(P<0.05)compared to the injured hepatocyte group.The white blood cell experiment results showed that the expression levels of TNF-αwere reduced in both the 10ng/ml HGF group(P<0.05)and the 25 ng/mL HGF group(P<0.05)compared to the injured white blood cell group.In the in vitro injury model,hepatocyte experiment results showed that the expression levels of TNF-αwere reduced in both the 25 ng/mL HGF group(P<0.05)and the 50 ng/mL HGF group(P<0.05)compared to the normal control group.For IL-4,the expression level was reduced in the 25 ng/mL HGF group compared to the normal control group(P<0.05).The white blood cell experiment results showed that the expression level of TNF-αwas increased in the 50 ng/mL HGF group compared to the 10 ng/mL HGF group(P<0.001);for IL-21,the expression levels were reduced in the CCL_(4) model group(P<0.05),10 ng/mL HGF group(P<0.05),25 ng/mL HGF group(P<0.05),and 50 ng/mL HGF group(P<0.05)compared to the normal control group.Conclusion:when the liver of mice is acutely damaged by CCL_(4),HGF can reduce the expression levels of inflammatory cytokines IL-8,TNF-α,IL-4 in hepatocytes,and TNF-αin liver white blood cells.展开更多
Approximately 350 million people are estimated to be persistently infected with hepatitis B virus(HBV) worldwide. HBV maintains persistent infection by employing covalently closed circular DNA(ccc DNA), a template for...Approximately 350 million people are estimated to be persistently infected with hepatitis B virus(HBV) worldwide. HBV maintains persistent infection by employing covalently closed circular DNA(ccc DNA), a template for all HBV RNAs. Chronic hepatitis B(CHB) patients are currently treated with nucleos(t)ide analogs such as lamivudine, adefovir, entecavir, and tenofovir. However, these treatments rarely cure CHB because they are unable to inhibit ccc DNA transcription and inhibit only a late stage in the HBV life cycle(the reverse transcription step in the nucleocapsid). Therefore, an understanding of the factors regulating ccc DNA transcription is required to stop this process. Among numerous factors, hepatocyte nuclear factors(HNFs) play the most important roles in ccc DNA transcription, especially in the generation of viral genomic RNA, a template for HBV replication. Therefore, proper control of HNF function could lead to the inhibition of HBV replication. In this review, we summarize and discuss the current understanding of the roles of HNFs in the HBV life cycle and the upstream factors that regulate HNFs. This knowledge will enable the identification of new therapeutic targets to cure CHB.展开更多
AIM:To investigate effects of hepatotropic growth factors on radical production in rat hepatocytes during sepsis.METHODS:Rat hepatocytes,isolated by collagenase perfusion,were incubated with a lipopolysaccharide(LPS)-...AIM:To investigate effects of hepatotropic growth factors on radical production in rat hepatocytes during sepsis.METHODS:Rat hepatocytes,isolated by collagenase perfusion,were incubated with a lipopolysaccharide(LPS)-containing cytokine mixture of interleukin-1β,tumor necrosis factor-α and interferon-γ to simulate sepsis and either co-incubated or pre-incubated with hepatotropic growth factors,e.g.hepatocyte growth factor,epidermal growth factor and/or transforming growth factor-α.Cells were analyzed for glutathione levels.Culture supernatants were assayed for produc-tion of reactive oxygen intermediates(ROIs) as well as NO2-,NO3-and S-nitrosothiols.To determine cellular damage,release of aspartate aminotransferase(AST) into the culture medium was analyzed.Activation of nuclear factor(NF)-κB was measured by electrophoretic mobility shift assay.RESULTS:Rat hepatocytes treated with the LPS-containing cytokine mixture showed a significant increase in ROI and nitrogen oxide intermediate formation.AST leakage was not significantly increased in cells treated with the LPS-containing cytokine mixture,independent of growth-factor co-stimulation.However,pretreatment with growth factors significantly reduced AST leakage and ROI formation while increasing cellular glutathione.Application of growth factors did not result in increased NF-κB activation.Pretreatment with growth factors further increased formation of NO2-,NO3-and S-nitrosothiols in hepatocytes stimulated with LPS-containing cytokine mixture.Thus,we propose that,together with an increase in glutathione increased NO2-,NO3-formation might shift their metabolism towards non-toxic products.CONCLUSION:Our data suggest that hepatotropic growth factors positively influence sepsis-induced hepatocellular injury by reducing cytotoxic ROI formation via induction of the cellular protective antioxidative systems.展开更多
Aim To purify hepatocyte regeneration stimulatory factor from shark liver and research its molecular feature and activity. Methods and Results Hepatocyte regeneration stimulatory factor (sHRSF) was isolated from hea...Aim To purify hepatocyte regeneration stimulatory factor from shark liver and research its molecular feature and activity. Methods and Results Hepatocyte regeneration stimulatory factor (sHRSF) was isolated from healthy shark livers and separated by homogenization, freezing melting, heat treating, centrifugation, and ultrafiltration. HRSF activity was found mainly in the subfraction of molecular weight less than 30 000 daltons. This crude ultrafiltrate was further purified successively by DEAE Sepharose fast flow chromatography, FPLC Resource 30Q, Resource Q and Mono Q chromatography. A single band was displayed on sodium dodecyl sulfate polyacrylamide gel electrophoresis, which corresponds to molecular weight of 14 600 daltons. The characteristic absorption was obtained at the wavelength 276 nm. The isoelectric point was about 5 1. It contained 18 amino acids and the 15 N terminal amino acid residues were LVGPIGAVGPAGKDG. It had a significant activity in stimulating liver to regenerate. Conclusion We obtained an unknown new active protein, that is hepatocyte regeneration stimulatory factor from shark liver (sHRSF).展开更多
AIM To study the changes of gene expression of hepatocyte growth factor (HGF) and hepatocyte growth factor receptor (HGFr) in hepatocellular carcinoma (HCC) tissue and nontumorous liver tissue and the relationship bet...AIM To study the changes of gene expression of hepatocyte growth factor (HGF) and hepatocyte growth factor receptor (HGFr) in hepatocellular carcinoma (HCC) tissue and nontumorous liver tissue and the relationship between these changes and the biological behavior of the tumor.METHODS Gene expression of HGF and HGFr in 26 cases of HCC tissue and their adjacent nontumorous liver tissues was determined with digoxigenin-labeled DNA probes.RESULTS Positive expression of HGF in HCC tissue was similar to that in the adjacent nontumorous liver tissue, but positive rate of HGF expression was lower than HGFr gene expression. However, HGFr expression was higher in the metastatic cases than in those without metastasis. It was found that HGFr was overexpressed in HCC tissue as well as in the adjacent nontumorous liver tissue.CONCLUSION There seems to be a close relationship between overexpression of HGFr gene and tumor metastasis, and the HGF and HGFr system plays an important role in regulating tumor growth and metastasis.展开更多
AIM:To investigate the role of hepatocyte growth factor(HGF) in cholangiocarcinoma(CCA) cell invasiveness and the mechanisms underlying such cellular responses. METHODS:Effects of HGF on cell invasion and motility wer...AIM:To investigate the role of hepatocyte growth factor(HGF) in cholangiocarcinoma(CCA) cell invasiveness and the mechanisms underlying such cellular responses. METHODS:Effects of HGF on cell invasion and motility were investigated in two human CCA cell lines,HuCCA-1 and KKU-M213,using Transwell in vitro assay.Levels of proteins of interest and their phosphorylated forms were determined by Western blotting.Localization of E-cadherin was analyzed by immunofluorescence staining and visualized under confocal microscope. Activities of matrix degrading enzymes were determined by zymography. RESULTS:Both CCA cell lines expressed higher Met levels than the H69 immortalized cholangiocyte cell line.HGF induced invasion and motility of the cell lines and altered E-cadherin from membrane to cytoplasm localization,but did not affect the levels of secreted matrix metalloproteinase(MMP) -2,MMP-9 andurokinase plasminogen activator,key matrix degrading enzymes involved in cell invasion.Concomitantly,HGF stimulated Akt and extracellular signal-regulated kinase(ERK) 1/2 phosphorylation but with slightly different kinetic profiles in the two cell lines.Inhibition of the phosphoinositide 3-kinase(PI3K) /Akt pathway by the PI3K inhibitor,LY294002,markedly suppressed HGFstimulated invasion of both CCA cell lines,and inhibition of the ERK pathway by U0126 suppressed HGF-induced invasion of the KKU-M213 cell line but had a moderate effect on HuCCA-1 cells. CONCLUSION:These data indicate that HGF promotes CCA cell invasiveness through dys-localization of E-cadherin and induction of cell motility by distinct signaling pathways depending on cell line type.展开更多
Objective:To observe the preventive and control effect of matrine on transforming growth factor(TCF- β1) and hepatocyte.growth factor(HCF) of liver fibrosis tissue in rals.Methods:A total of48 SD rats were randomly d...Objective:To observe the preventive and control effect of matrine on transforming growth factor(TCF- β1) and hepatocyte.growth factor(HCF) of liver fibrosis tissue in rals.Methods:A total of48 SD rats were randomly divided into A,B,C,D groups with 12 in each,group A as the normal control group and groups B.C,D as liver fibrosis models using composite modulus method with carbon tetrachloride(CCL_4).Group B was the model group,group C adopted γ— interferon lavage therapy in the second day of modeling,and group D adopted matrine lavage treatment,at 4 and8 weeks after treatment.Six rats were executed for detection of TGF- β1 and HGF,liver tissue histology and comparison fibrosis degree changes of rat liver tissue between groups.Results:Croups B,C,D showed a more significantly increased TCF- β1 at each time point compared with group A(P<0.05);Group B showed a more significantly increased TGF- β1 than groups C and D at weeks 4 and 8(P<0.05);group D showed a lowest level of TGF-β1,followed by groups C and B.HGF of group B decreased more significantly than A group at weeks 4 and 8(P<0.05);HGF of groups C and D was significantly elevated at 4 and 8 weeks than groups A and B(P<0.05),in which the group D showed the highest level of HGF.According to tissue histologic observation,rat liver tissue structure of group A was clear and normal,tissue structure of group B was destroyed with obvious fibrous tissue hyperplasia and fatty change of hepatic cells;groups C and D showed a slighter liver tissue damage,cell necrosis and connective tissue hyperplasia in collect abbacy than group B with a trend of obvious improvement.Conclusions:Matrine can reduce TGF- β1expression and enhance the activity of HGF,so as to realize the inhibition effect on liver fibrosis in rats.展开更多
Hepatocyte nuclear factor 4-alpha (HNF4-α) is a nuclear receptor regulating metabolism, cell junctions, differentiation and proliferation in liver and intestinal epithelial cells. Mutations within the HNF4...Hepatocyte nuclear factor 4-alpha (HNF4-α) is a nuclear receptor regulating metabolism, cell junctions, differentiation and proliferation in liver and intestinal epithelial cells. Mutations within the HNF4A gene are associated with human diseases such as maturity-onset diabetes of the young. Recently, HNF4A has also been described as a susceptibility gene for ulcerative colitis in genome-wide association studies. In addition, specific HNF4A genetic variants have been identified in pediatric cohorts of Crohn’s disease. Results obtained from knockout mice supported that HNF4-α can protect the intestinal mucosae against inflammation. However, the exact molecular links behind HNF4-α and inflammatory bowel diseases remains elusive. In this review, we will summarize the current knowledge about the role of HNF4-α and its isoforms in inflammation. Specific nature of HNF4-α P1 and P2 classes of isoforms will be summarized. HNF4-α role as a hepatocyte mediator for cytokines relays during liver inflammation will be integrated based on documented examples of the literature. Conclusions that can be made from these earlier liver studies will serve as a basis to extrapolate correlations and divergences applicable to intestinal inflammation. Finally, potential functional roles for HNF4-α isoforms in protecting the intestinal mucosae from chronic and pathological inflammation will be presented.展开更多
Hepatocyte nuclear factor 4-alpha(HNF4α)is a highly conserved member of nuclear receptor superfamily of ligand-dependent transcription factors that is expressed in liver and gastrointestinal organs(pancreas,stomach,a...Hepatocyte nuclear factor 4-alpha(HNF4α)is a highly conserved member of nuclear receptor superfamily of ligand-dependent transcription factors that is expressed in liver and gastrointestinal organs(pancreas,stomach,and intestine).In liver,HNF4αis best known for its role as a master regulator of liver-specific gene expression and essential for adult and fetal liver function.Dysregulation of HNF4αexpression has been associated with many human diseases such as ulcerative colitis,colon cancer,maturity-onset diabetes of the young,liver cirrhosis,and hepatocellular carcinoma.However,the precise role of HNF4αin the etiology of these human pathogenesis is not well understood.Limited information is known about the role of HNF4αisoforms in liver and gastrointestinal disease progression.There is,therefore,a critical need to know how disruption of the expression of these isoforms may impact on disease progression and phenotypes.In this review,we will update our current understanding on the role of HNF4αin human liver and gastrointestinal diseases.We further provide additional information on possible use of HNF4αas a target for potential therapeutic approaches.展开更多
Hepatocellular carcinoma(HCC) is the fifth most common cancer and is the second leading cause of cancer death. Since the diagnosis of HCC is difficult, in many cases patients with HCC are diagnosed advanced stage of d...Hepatocellular carcinoma(HCC) is the fifth most common cancer and is the second leading cause of cancer death. Since the diagnosis of HCC is difficult, in many cases patients with HCC are diagnosed advanced stage of development. Hepatocyte growth factor(HGF)/c-mesenchymal-epithelial transition receptor(c-Met) axis is a key signaling pathway in HCC, either via canonical or non-canonical pathways. Available treatments against HCC based upon HGF/c-Met inhibition can increase patient lifespan, but do not reach the expected therapeutic benefits. In HCC, c-Met monomers can bind other receptor monomers, activating several noncanonical signaling pathways, leading to increased cell proliferation, invasion, motility, and drug resistance. All of these processes are enhanced by the tumor microenvironment, with stromal cells contributing to boost tumor progression through oxidative stress, angiogenesis, lymphangiogenesis, inflammation, and fibrosis. Novel treatments against HCC are being explored to modulate other targets such as microR NAs, methyltransferases, and acetyltransferases, which are all involved in the regulation of gene expression in cancer. This review compiles basic knowledge regarding signaling pathways in HCC, and compounds already used or showing potential to be used in clinical trials.展开更多
Atherosclerotic involvements are an essential causal element of prospect in diabetes mellitus(DM), with carotid atherosclerosis(CA) being a common risk-factor for prospective crisis of coronary artery diseases(CAD) an...Atherosclerotic involvements are an essential causal element of prospect in diabetes mellitus(DM), with carotid atherosclerosis(CA) being a common risk-factor for prospective crisis of coronary artery diseases(CAD) and/or cerebral infarction(CI) in DM subjects. From another point of view, several reports have supplied augmenting proof that hepatocyte growth factor(HGF) has a physiopathological part in DM involvements. HGF has been a mesenchymal-derived polyphenic factor which modulates development, motion, and morphosis of diverse cells, and has been regarded as a humor intermediator of epithelial-mesenchymal interplays. The serum concentrations of HGF have been elevated in subjects with CAD and CI, especially during the acute phase of both disturbances. In our study with 89 type 2 DM patients, the association between serum concentrationsof HGF and risk-factors for macrovascular complicationsinclusive of CA were examined. The average of serumHGF levels in the subjects was more elevated than thereference interval. The serum HGF concentrations associated positively with both intimal-media thickness(IMT)(r = 0.24, P = 0.0248) and plaque score(r = 0.27, P =0.0126), indicating a relationship between the elevatedHGF concentrations and advancement of CA involvements. Multivariate statistical analysis accentuated thatserum concentrations of HGF would be associated inde-pendently with IMT(standardized = 0.28, P = 0.0499).The review indicates what is presently known regardingserum HGF might be a new and meaningful biomarkerof macroangiopathy in DM subjects.展开更多
AIM: To investigate the protective efficacy of recombinant adenovirus containing hyper-interleukin-6 (Hyper-IL-6, HIL-6) and hepatocyte growth factor (HGF) (Ad-HGF-HIL-6) compared to that of recombinant adenovirus con...AIM: To investigate the protective efficacy of recombinant adenovirus containing hyper-interleukin-6 (Hyper-IL-6, HIL-6) and hepatocyte growth factor (HGF) (Ad-HGF-HIL-6) compared to that of recombinant adenovirus containing either HIL-6 or HGF (Ad-HIL-6 or Ad-HGF) in rats with acute-on-chronic liver failure (ACLF).METHODS: The recombinant adenoviruses containing HIL-6 and/or HGF were constructed. We established an ACLF model, and rats were randomly assigned to control, model, Ad-GFP, Ad-HIL-6, Ad-HGF or Ad-HGF-HIL-6 group. We collected serum and liver tissue samples to test pathological changes, biochemical indexes and molecular biological indexes.RESULTS: Attenuated alanine aminotransferase, prothrombin time, high-mobility group box 1 (HMGB1), endotoxin, tumour necrosis factor (TNF)-α and interferon-γ were observed in the Ad-HGF-, Ad-HIL-6- and Ad-HGF-HIL-6-treated rats with ACLF. Likewise, reduced hepatic damage and apoptotic activity, as well as reduced HMGB1 and Bax proteins, but raised expression of Ki67 and Bcl-2 proteins and Bcl-2/Bax ratio were also observed in the Ad-HGF-, Ad-HIL-6- and Ad-HGF-HIL-6-treated rats with ACLF. More significant changes were observed in the Ad-HGF-HIL-6 treatment group without obvious side effects. Furthermore, caspase-3 at the protein level decreased in the Ad-HIL-6 and Ad-HGF-HIL-6 treatment groups, more predominantly in the latter group.CONCLUSION: This study identifies that the protective efficacy of Ad-HGF-HIL-6 is more potent than that of Ad-HGF or Ad-HIL-6 in ACLF rats, with no significant side effects.展开更多
Background: Our previous study showed that overexpression of hepatocyte nuclear factor 4α(HNF4α) could directly promote mesenchymal stem cells(MSCs) to differentiate into hepatocyte-like cells. However, the efficien...Background: Our previous study showed that overexpression of hepatocyte nuclear factor 4α(HNF4α) could directly promote mesenchymal stem cells(MSCs) to differentiate into hepatocyte-like cells. However, the efficiency of hepatic differentiation remains low. The purpose of our study was to establish an MSC cell line that overexpressed HNF4α and FOXA2 genes to obtain an increased hepatic differentiation efficiency and hepatocyte-like cells with more mature hepatocyte functions. Methods: Successful establishment of high-level HNF4α and FOXA2 co-overexpression in human induced hepatocyte-like cells(hi Hep cells) was verified by flow cytometry, immunofluorescence and RT-PCR. Measurements of albumin(ALB), urea, glucose, indocyanine green(ICG) uptake and release, cytochrome P450(CYP) activity and gene expression were used to analyze mature hepatic functions of hi Hep cells. Results: hi Hep cells efficiently express HNF4α and FOXA2 genes and proteins, exhibit typical epithelial morphology and acquire mature hepatocyte-like cell functions, including ALB secretion, urea production, ICG uptake and release, and glycogen storage. hi Hep cells can be activated by CYP inducers. The percentage of both ALB and α-1-antitrypsin(AAT)-positive cells was approximately 72.6%. The expression levels of hepatocyte-specific genes( ALB, AAT, and CYP1A1) and liver drug transport-related genes( ABCB1, ABCG2, and SLC22A18) in hi Hep cells were significantly higher than those in MSCs-Vector cells. The hi Hep cells did not form tumors after subcutaneous xenograft in BALB/c nude mice after 2 months. Conclusion: This study provides an accessible, feasible and efficient strategy to generate hi Hep cells from MSCs.展开更多
Summary: Angiogenic gene therapy and cell-based therapy for peripheral arterial disease (PAD) have been studied intensively currently. This study aimed to investigate whether combining mesenchymal stem cells (MSCs...Summary: Angiogenic gene therapy and cell-based therapy for peripheral arterial disease (PAD) have been studied intensively currently. This study aimed to investigate whether combining mesenchymal stem cells (MSCs)transplantation with ex vivo human hepatocyte growth factor (HGF) gene transfer was more therapeutically efficient than the MSCs therapy alone in a rat model of hindlimb ischemia. One week after establishing hindlimb ischemia models, Sprague-Dawley (SD) rats were randomized to receive HGF gene-modified MSCs transplantation (HGF-MSC group), untreated MSCs transplantation (MSC group), or PBS injection (PBS group), respectively. Three weeks after injection, angiogenesis was significantly induced by both MSCs and HGF-MSCs transplantation, and capillary density was the highest in the HGF-MSC group. The number of transplanted cell-derived endothelial cells was greater in HGF-MSC group than in MSC group after one week treatment. The expression of angiogenic cytokines such as HGF and VEGF in local ischemic muscles was more abundant in HGF-MSC group than in the other two groups. In vitro, the conditioned media obtained from HGF-MSCs cultures exerted proproliferative and promigratory effects on endothelial cells. It is concluded that HGF gene-modified MSCs transplantation therapy may induce more potent angiogenesis than the MSCs therapy alone. Engraftment of MSCs combined with angiogenic gene delivery may be a promising therapeutic strategy for the treatment of severe PAD.展开更多
文摘Fulminant hepatitis is a serious and complex disease with high mortality. In recent years, hepatocyte growth-promoting factors (pHGF), developed on the basis of fetal liver cell injection, has been jointly used as a comprehensive therapy for fulminant hepatitis. The following is a report of the results of using pHGF for the treatment of 1687 cases of fulminant hepatitis (with 1196 controls).
基金the Natural Science Foundation of Shaanxi Province(No.2022JM-521)the Science and Technology Plan Project of Xi’an(No.21YXYJ0031).
文摘AIM:To explore the effects of hepatocyte growth factor(HGF)on retinal pigment epithelium(RPE)cell behaviors.METHODS:The human adult retinal pigment epithelial cell line-19(ARPE-19)were treated by HGF or mesenchymalepithelial transition factor(MET)inhibitor SU11274 in vitro.Cell viability was detected by a Cell Counting Kit-8 assay.Cell proliferation and motility was detected by a bromodeoxyuridine incorporation assay and a wound healing assay,respectively.The expression levels of MET,phosphorylated MET,protein kinase B(AKT),and phosphorylated AKT proteins were determined by Western blot assay.The MET and phosphorylated MET proteins were also determined by immunofluorescence assay.RESULTS:HGF increased ARPE-19 cells’viability,proliferation and migration,and induced an increase of phosphorylated MET and phosphorylated AKT proteins.SU11274 significantly reduced cell viability,proliferation,and migration and decreased the expression of MET and AKT proteins.SU11274 suppressed HGF-induced increase of viability,proliferation,and migration in ARPE-19 cells.Additionally,SU11274 also blocked HGF-induced phosphorylation of MET and AKT proteins.CONCLUSION:HGF enhances cellular viability,proliferation,and migration in RPE cells through the MET/AKT signaling pathway,whereas this enhancement is suppressed by the MET inhibitor SU11274.HGF-induced MET/AKT signaling might be a vital contributor of RPE cells survival.
文摘Hepatocyte growth factor(HGF)and its receptor,c-Met,play important roles in the occurrence,development,and treatment of gastric cancer(GC).This review explored the function of the HGF/c-Met signaling pathway in GC and its potential targeted therapeutic mechanisms.As one of the most common malignant tumors worldwide,GC has a complex pathogenesis and limited therapeutic options.Therefore,a thorough understanding of the molecular mechanism of GC is very important for the development of new therapeutic methods.The HGF/c-Met signaling pathway plays an important role in the proliferation,migration,and invasion of GC cells and has become a new therapeutic target.This review summarizes the current research progress on the role of HGF/c-Met in GC and discusses targeted therapeutic strategies targeting this signaling pathway,providing new ideas and directions for the treatment of GC.
文摘BACKGROUND Atherosclerosis(AS),a chronic inflammatory disease of blood vessels,is a major contributor to cardiovascular disease.Dental pulp stem cells(DPSCs)are capable of exerting immunomodulatory and anti-inflammatory effects by secreting cytokines and exosomes and are widely used to treat autoimmune and inflam-mation-related diseases.Hepatocyte growth factor(HGF)is a pleiotropic cytokine that plays a key role in many inflammatory and autoimmune diseases.AIM To modify DPSCs with HGF(DPSC-HGF)and evaluate the therapeutic effect of DPSC-HGF on AS using an apolipoprotein E-knockout(ApoE-/-)mouse model and an in vitro cellular model.METHODS ApoE-/-mice were fed with a high-fat diet(HFD)for 12 wk and injected with DPSC-HGF or Ad-Null modified DPSCs(DPSC-Null)through tail vein at weeks 4,7,and 11,respectively,and the therapeutic efficacy and mechanisms were analyzed by histopathology,flow cytometry,lipid and glucose measurements,real-time reverse transcription polymerase chain reaction(RT-PCR),and enzyme-linked immunosorbent assay at the different time points of the experiment.An in vitro inflammatory cell model was established by using RAW264.7 cells and human aortic endothelial cells(HAOECs),and indirect co-cultured with supernatant of DPSC-Null(DPSC-Null-CM)or DPSC-HGF-CM,and the effect and mechanisms were analyzed by flow cytometry,RT-PCR and western blot.Nuclear factor-κB(NF-κB)activators and inhibitors were also used to validate the related signaling pathways.RESULTS DPSC-Null and DPSC-HGF treatments decreased the area of atherosclerotic plaques and reduced the expression of inflammatory factors,and the percentage of macrophages in the aorta,and DPSC-HGF treatment had more pronounced effects.DPSCs treatment had no effect on serum lipoprotein levels.The FACS results showed that DPSCs treatment reduced the percentages of monocytes,neutrophils,and M1 macrophages in the peripheral blood and spleen.DPSC-Null-CM and DPSC-HGF-CM reduced adhesion molecule expression in tumor necrosis factor-αstimulated HAOECs and regulated M1 polarization and inflammatory factor expression in lipopolysaccharide-induced RAW264.7 cells by inhibiting the NF-κB signaling pathway.CONCLUSION This study suggested that DPSC-HGF could more effectively ameliorate AS in ApoE-/-mice on a HFD,and could be of greater value in stem cell-based treatments for AS.
基金Research Project of Jiangsu Provincial Health Commission,No.Z2022008and Research Project of Yangzhou Health Commission,No.2023-2-27.
文摘BACKGROUND Pulmonary fibrosis is one of the main reasons for the high mortality rate among acute respiratory distress syndrome(ARDS)patients.Mesenchymal stromal cell-derived microvesicles(MSC-MVs)have been shown to exert antifibrotic effects in lung diseases.AIM To investigate the effects and mechanisms of MSC-MVs on pulmonary fibrosis in ARDS mouse models.METHODS MSC-MVs with low hepatocyte growth factor(HGF)expression(siHGF-MSC-MVs)were obtained via lentivirus transfection and used to establish the ARDS pulmonary fibrosis mouse model.Following intubation,respiratory mechanics-related indicators were measured via an experimental small animal lung function tester.Homing of MSC-MVs in lung tissues was investigated by near-infrared live imaging.Immunohistochemical,western blotting,ELISA and other methods were used to detect expression of pulmonary fibrosis-related proteins and to compare effects on pulmonary fibrosis and fibrosis-related indicators.RESULTS The MSC-MVs gradually migrated and homed to damaged lung tissues in the ARDS model mice.Treatment with MSC-MVs significantly reduced lung injury and pulmonary fibrosis scores.However,low expression of HGF(siHGF-MSC-MVs)significantly inhibited the effects of MSC-MVs(P<0.05).Compared with the ARDS pulmonary fibrosis group,the MSC-MVs group exhibited suppressed expression of type I collagen antigen,type III collagen antigen,and the proteins transforming growth factor-βandα-smooth muscle actin,whereas the siHGF-MVs group exhibited significantly increased expression of these proteins.In addition,pulmonary compliance and the pressure of oxygen/oxygen inhalation ratio were significantly lower in the MSC-MVs group,and the effects of the MSC-MVs were significantly inhibited by low HGF expression(all P<0.05).CONCLUSION MSC-MVs improved lung ventilation functions and inhibited pulmonary fibrosis in ARDS mice partly via HGF mRNA transfer.
基金Natural Science Foundation of Hainan Province(No.821QN0893)Natural Science Project of Hainan Provincial Department of Education(No.Hnky2022-38)Innovation and Entrepreneurship Training Program for College Students of Hainan Medical College(No.S202211810034)。
文摘Objective:The aim of this study is to investigate the effects of Hepatocyte Growth Factor(HGF)on the expression levels of IL-8,TNF-α,IL-4,and IL-21 in mice with liver injury induced by CCL_(4).Methods:An acute liver injury mouse model was established using CCL_(4),and hepatocytes and white blood cells were separated by gradient density centrifugation.Different concentrations of HGF were added in vitro,and the expression levels of cytokines were detected using ELISA.Results:In the in vivo injury model,the hepatocyte experiment results showed that the expression level of IL-8 was reduced in the 10 ng/mL HGF group compared to the injured hepatocyte group(P<0.05),and increased in the 50 ng/mL HGF group compared to the 10 ng/mL HGF group(P<0.05).For IL-4,the expression levels were reduced in both the 25 ng/mL HGF group(P<0.05)and the 50 ng/mL HGF group(P<0.05)compared to the injured hepatocyte group.The white blood cell experiment results showed that the expression levels of TNF-αwere reduced in both the 10ng/ml HGF group(P<0.05)and the 25 ng/mL HGF group(P<0.05)compared to the injured white blood cell group.In the in vitro injury model,hepatocyte experiment results showed that the expression levels of TNF-αwere reduced in both the 25 ng/mL HGF group(P<0.05)and the 50 ng/mL HGF group(P<0.05)compared to the normal control group.For IL-4,the expression level was reduced in the 25 ng/mL HGF group compared to the normal control group(P<0.05).The white blood cell experiment results showed that the expression level of TNF-αwas increased in the 50 ng/mL HGF group compared to the 10 ng/mL HGF group(P<0.001);for IL-21,the expression levels were reduced in the CCL_(4) model group(P<0.05),10 ng/mL HGF group(P<0.05),25 ng/mL HGF group(P<0.05),and 50 ng/mL HGF group(P<0.05)compared to the normal control group.Conclusion:when the liver of mice is acutely damaged by CCL_(4),HGF can reduce the expression levels of inflammatory cytokines IL-8,TNF-α,IL-4 in hepatocytes,and TNF-αin liver white blood cells.
文摘Approximately 350 million people are estimated to be persistently infected with hepatitis B virus(HBV) worldwide. HBV maintains persistent infection by employing covalently closed circular DNA(ccc DNA), a template for all HBV RNAs. Chronic hepatitis B(CHB) patients are currently treated with nucleos(t)ide analogs such as lamivudine, adefovir, entecavir, and tenofovir. However, these treatments rarely cure CHB because they are unable to inhibit ccc DNA transcription and inhibit only a late stage in the HBV life cycle(the reverse transcription step in the nucleocapsid). Therefore, an understanding of the factors regulating ccc DNA transcription is required to stop this process. Among numerous factors, hepatocyte nuclear factors(HNFs) play the most important roles in ccc DNA transcription, especially in the generation of viral genomic RNA, a template for HBV replication. Therefore, proper control of HNF function could lead to the inhibition of HBV replication. In this review, we summarize and discuss the current understanding of the roles of HNFs in the HBV life cycle and the upstream factors that regulate HNFs. This knowledge will enable the identification of new therapeutic targets to cure CHB.
基金Supported by The Federal Ministry of Research (BMBF-01 GN0984)
文摘AIM:To investigate effects of hepatotropic growth factors on radical production in rat hepatocytes during sepsis.METHODS:Rat hepatocytes,isolated by collagenase perfusion,were incubated with a lipopolysaccharide(LPS)-containing cytokine mixture of interleukin-1β,tumor necrosis factor-α and interferon-γ to simulate sepsis and either co-incubated or pre-incubated with hepatotropic growth factors,e.g.hepatocyte growth factor,epidermal growth factor and/or transforming growth factor-α.Cells were analyzed for glutathione levels.Culture supernatants were assayed for produc-tion of reactive oxygen intermediates(ROIs) as well as NO2-,NO3-and S-nitrosothiols.To determine cellular damage,release of aspartate aminotransferase(AST) into the culture medium was analyzed.Activation of nuclear factor(NF)-κB was measured by electrophoretic mobility shift assay.RESULTS:Rat hepatocytes treated with the LPS-containing cytokine mixture showed a significant increase in ROI and nitrogen oxide intermediate formation.AST leakage was not significantly increased in cells treated with the LPS-containing cytokine mixture,independent of growth-factor co-stimulation.However,pretreatment with growth factors significantly reduced AST leakage and ROI formation while increasing cellular glutathione.Application of growth factors did not result in increased NF-κB activation.Pretreatment with growth factors further increased formation of NO2-,NO3-and S-nitrosothiols in hepatocytes stimulated with LPS-containing cytokine mixture.Thus,we propose that,together with an increase in glutathione increased NO2-,NO3-formation might shift their metabolism towards non-toxic products.CONCLUSION:Our data suggest that hepatotropic growth factors positively influence sepsis-induced hepatocellular injury by reducing cytotoxic ROI formation via induction of the cellular protective antioxidative systems.
基金NationalMarine863Project (No .2 0 0 1AA62 40 90),NationalNaturalScienceFoundationofChina (No .3 0 17110 3 )
文摘Aim To purify hepatocyte regeneration stimulatory factor from shark liver and research its molecular feature and activity. Methods and Results Hepatocyte regeneration stimulatory factor (sHRSF) was isolated from healthy shark livers and separated by homogenization, freezing melting, heat treating, centrifugation, and ultrafiltration. HRSF activity was found mainly in the subfraction of molecular weight less than 30 000 daltons. This crude ultrafiltrate was further purified successively by DEAE Sepharose fast flow chromatography, FPLC Resource 30Q, Resource Q and Mono Q chromatography. A single band was displayed on sodium dodecyl sulfate polyacrylamide gel electrophoresis, which corresponds to molecular weight of 14 600 daltons. The characteristic absorption was obtained at the wavelength 276 nm. The isoelectric point was about 5 1. It contained 18 amino acids and the 15 N terminal amino acid residues were LVGPIGAVGPAGKDG. It had a significant activity in stimulating liver to regenerate. Conclusion We obtained an unknown new active protein, that is hepatocyte regeneration stimulatory factor from shark liver (sHRSF).
文摘AIM To study the changes of gene expression of hepatocyte growth factor (HGF) and hepatocyte growth factor receptor (HGFr) in hepatocellular carcinoma (HCC) tissue and nontumorous liver tissue and the relationship between these changes and the biological behavior of the tumor.METHODS Gene expression of HGF and HGFr in 26 cases of HCC tissue and their adjacent nontumorous liver tissues was determined with digoxigenin-labeled DNA probes.RESULTS Positive expression of HGF in HCC tissue was similar to that in the adjacent nontumorous liver tissue, but positive rate of HGF expression was lower than HGFr gene expression. However, HGFr expression was higher in the metastatic cases than in those without metastasis. It was found that HGFr was overexpressed in HCC tissue as well as in the adjacent nontumorous liver tissue.CONCLUSION There seems to be a close relationship between overexpression of HGFr gene and tumor metastasis, and the HGF and HGFr system plays an important role in regulating tumor growth and metastasis.
基金Supported by Mahidol University,Thailand and Thailand Research Fund(Suthiphongchai T)Strategic Consortia for Capacity Building of University Faculties and Staff Scholarship,Commission on Higher Education,Ministry of Education,Thailand(Menakongka A)
文摘AIM:To investigate the role of hepatocyte growth factor(HGF) in cholangiocarcinoma(CCA) cell invasiveness and the mechanisms underlying such cellular responses. METHODS:Effects of HGF on cell invasion and motility were investigated in two human CCA cell lines,HuCCA-1 and KKU-M213,using Transwell in vitro assay.Levels of proteins of interest and their phosphorylated forms were determined by Western blotting.Localization of E-cadherin was analyzed by immunofluorescence staining and visualized under confocal microscope. Activities of matrix degrading enzymes were determined by zymography. RESULTS:Both CCA cell lines expressed higher Met levels than the H69 immortalized cholangiocyte cell line.HGF induced invasion and motility of the cell lines and altered E-cadherin from membrane to cytoplasm localization,but did not affect the levels of secreted matrix metalloproteinase(MMP) -2,MMP-9 andurokinase plasminogen activator,key matrix degrading enzymes involved in cell invasion.Concomitantly,HGF stimulated Akt and extracellular signal-regulated kinase(ERK) 1/2 phosphorylation but with slightly different kinetic profiles in the two cell lines.Inhibition of the phosphoinositide 3-kinase(PI3K) /Akt pathway by the PI3K inhibitor,LY294002,markedly suppressed HGFstimulated invasion of both CCA cell lines,and inhibition of the ERK pathway by U0126 suppressed HGF-induced invasion of the KKU-M213 cell line but had a moderate effect on HuCCA-1 cells. CONCLUSION:These data indicate that HGF promotes CCA cell invasiveness through dys-localization of E-cadherin and induction of cell motility by distinct signaling pathways depending on cell line type.
基金supported by the Science and Technology Projectsof Technology Bureau of Taiyuan City(Graut No:11016203)
文摘Objective:To observe the preventive and control effect of matrine on transforming growth factor(TCF- β1) and hepatocyte.growth factor(HCF) of liver fibrosis tissue in rals.Methods:A total of48 SD rats were randomly divided into A,B,C,D groups with 12 in each,group A as the normal control group and groups B.C,D as liver fibrosis models using composite modulus method with carbon tetrachloride(CCL_4).Group B was the model group,group C adopted γ— interferon lavage therapy in the second day of modeling,and group D adopted matrine lavage treatment,at 4 and8 weeks after treatment.Six rats were executed for detection of TGF- β1 and HGF,liver tissue histology and comparison fibrosis degree changes of rat liver tissue between groups.Results:Croups B,C,D showed a more significantly increased TCF- β1 at each time point compared with group A(P<0.05);Group B showed a more significantly increased TGF- β1 than groups C and D at weeks 4 and 8(P<0.05);group D showed a lowest level of TGF-β1,followed by groups C and B.HGF of group B decreased more significantly than A group at weeks 4 and 8(P<0.05);HGF of groups C and D was significantly elevated at 4 and 8 weeks than groups A and B(P<0.05),in which the group D showed the highest level of HGF.According to tissue histologic observation,rat liver tissue structure of group A was clear and normal,tissue structure of group B was destroyed with obvious fibrous tissue hyperplasia and fatty change of hepatic cells;groups C and D showed a slighter liver tissue damage,cell necrosis and connective tissue hyperplasia in collect abbacy than group B with a trend of obvious improvement.Conclusions:Matrine can reduce TGF- β1expression and enhance the activity of HGF,so as to realize the inhibition effect on liver fibrosis in rats.
文摘Hepatocyte nuclear factor 4-alpha (HNF4-α) is a nuclear receptor regulating metabolism, cell junctions, differentiation and proliferation in liver and intestinal epithelial cells. Mutations within the HNF4A gene are associated with human diseases such as maturity-onset diabetes of the young. Recently, HNF4A has also been described as a susceptibility gene for ulcerative colitis in genome-wide association studies. In addition, specific HNF4A genetic variants have been identified in pediatric cohorts of Crohn’s disease. Results obtained from knockout mice supported that HNF4-α can protect the intestinal mucosae against inflammation. However, the exact molecular links behind HNF4-α and inflammatory bowel diseases remains elusive. In this review, we will summarize the current knowledge about the role of HNF4-α and its isoforms in inflammation. Specific nature of HNF4-α P1 and P2 classes of isoforms will be summarized. HNF4-α role as a hepatocyte mediator for cytokines relays during liver inflammation will be integrated based on documented examples of the literature. Conclusions that can be made from these earlier liver studies will serve as a basis to extrapolate correlations and divergences applicable to intestinal inflammation. Finally, potential functional roles for HNF4-α isoforms in protecting the intestinal mucosae from chronic and pathological inflammation will be presented.
文摘Hepatocyte nuclear factor 4-alpha(HNF4α)is a highly conserved member of nuclear receptor superfamily of ligand-dependent transcription factors that is expressed in liver and gastrointestinal organs(pancreas,stomach,and intestine).In liver,HNF4αis best known for its role as a master regulator of liver-specific gene expression and essential for adult and fetal liver function.Dysregulation of HNF4αexpression has been associated with many human diseases such as ulcerative colitis,colon cancer,maturity-onset diabetes of the young,liver cirrhosis,and hepatocellular carcinoma.However,the precise role of HNF4αin the etiology of these human pathogenesis is not well understood.Limited information is known about the role of HNF4αisoforms in liver and gastrointestinal disease progression.There is,therefore,a critical need to know how disruption of the expression of these isoforms may impact on disease progression and phenotypes.In this review,we will update our current understanding on the role of HNF4αin human liver and gastrointestinal diseases.We further provide additional information on possible use of HNF4αas a target for potential therapeutic approaches.
基金Supported by grants BIO2014-56092-R(MINECO and FEDER)No.P12-CTS-1507(Andalusian Government and FEDER)+1 种基金funds from group BIO-267(Andalusian Government)The“CIBER de Enfermedades Raras”is an initiative from the ISCIII(Spain)
文摘Hepatocellular carcinoma(HCC) is the fifth most common cancer and is the second leading cause of cancer death. Since the diagnosis of HCC is difficult, in many cases patients with HCC are diagnosed advanced stage of development. Hepatocyte growth factor(HGF)/c-mesenchymal-epithelial transition receptor(c-Met) axis is a key signaling pathway in HCC, either via canonical or non-canonical pathways. Available treatments against HCC based upon HGF/c-Met inhibition can increase patient lifespan, but do not reach the expected therapeutic benefits. In HCC, c-Met monomers can bind other receptor monomers, activating several noncanonical signaling pathways, leading to increased cell proliferation, invasion, motility, and drug resistance. All of these processes are enhanced by the tumor microenvironment, with stromal cells contributing to boost tumor progression through oxidative stress, angiogenesis, lymphangiogenesis, inflammation, and fibrosis. Novel treatments against HCC are being explored to modulate other targets such as microR NAs, methyltransferases, and acetyltransferases, which are all involved in the regulation of gene expression in cancer. This review compiles basic knowledge regarding signaling pathways in HCC, and compounds already used or showing potential to be used in clinical trials.
文摘Atherosclerotic involvements are an essential causal element of prospect in diabetes mellitus(DM), with carotid atherosclerosis(CA) being a common risk-factor for prospective crisis of coronary artery diseases(CAD) and/or cerebral infarction(CI) in DM subjects. From another point of view, several reports have supplied augmenting proof that hepatocyte growth factor(HGF) has a physiopathological part in DM involvements. HGF has been a mesenchymal-derived polyphenic factor which modulates development, motion, and morphosis of diverse cells, and has been regarded as a humor intermediator of epithelial-mesenchymal interplays. The serum concentrations of HGF have been elevated in subjects with CAD and CI, especially during the acute phase of both disturbances. In our study with 89 type 2 DM patients, the association between serum concentrationsof HGF and risk-factors for macrovascular complicationsinclusive of CA were examined. The average of serumHGF levels in the subjects was more elevated than thereference interval. The serum HGF concentrations associated positively with both intimal-media thickness(IMT)(r = 0.24, P = 0.0248) and plaque score(r = 0.27, P =0.0126), indicating a relationship between the elevatedHGF concentrations and advancement of CA involvements. Multivariate statistical analysis accentuated thatserum concentrations of HGF would be associated inde-pendently with IMT(standardized = 0.28, P = 0.0499).The review indicates what is presently known regardingserum HGF might be a new and meaningful biomarkerof macroangiopathy in DM subjects.
基金Supported by Natural Science Foundation of Chongqing,No.cstc2012jj A10052Young High-End Medical Reserve Personnel Training Plan Foundation of Chongqing,China
文摘AIM: To investigate the protective efficacy of recombinant adenovirus containing hyper-interleukin-6 (Hyper-IL-6, HIL-6) and hepatocyte growth factor (HGF) (Ad-HGF-HIL-6) compared to that of recombinant adenovirus containing either HIL-6 or HGF (Ad-HIL-6 or Ad-HGF) in rats with acute-on-chronic liver failure (ACLF).METHODS: The recombinant adenoviruses containing HIL-6 and/or HGF were constructed. We established an ACLF model, and rats were randomly assigned to control, model, Ad-GFP, Ad-HIL-6, Ad-HGF or Ad-HGF-HIL-6 group. We collected serum and liver tissue samples to test pathological changes, biochemical indexes and molecular biological indexes.RESULTS: Attenuated alanine aminotransferase, prothrombin time, high-mobility group box 1 (HMGB1), endotoxin, tumour necrosis factor (TNF)-α and interferon-γ were observed in the Ad-HGF-, Ad-HIL-6- and Ad-HGF-HIL-6-treated rats with ACLF. Likewise, reduced hepatic damage and apoptotic activity, as well as reduced HMGB1 and Bax proteins, but raised expression of Ki67 and Bcl-2 proteins and Bcl-2/Bax ratio were also observed in the Ad-HGF-, Ad-HIL-6- and Ad-HGF-HIL-6-treated rats with ACLF. More significant changes were observed in the Ad-HGF-HIL-6 treatment group without obvious side effects. Furthermore, caspase-3 at the protein level decreased in the Ad-HIL-6 and Ad-HGF-HIL-6 treatment groups, more predominantly in the latter group.CONCLUSION: This study identifies that the protective efficacy of Ad-HGF-HIL-6 is more potent than that of Ad-HGF or Ad-HIL-6 in ACLF rats, with no significant side effects.
基金supported by grants from the National Natu-ral Science Foundation of China(81501561)Medical Scientific Re-search Foundation of Guangdong Province(A2018121)Natural Science Foundation of Guangdong Province(2014A030310043 and 2017A030313873)
文摘Background: Our previous study showed that overexpression of hepatocyte nuclear factor 4α(HNF4α) could directly promote mesenchymal stem cells(MSCs) to differentiate into hepatocyte-like cells. However, the efficiency of hepatic differentiation remains low. The purpose of our study was to establish an MSC cell line that overexpressed HNF4α and FOXA2 genes to obtain an increased hepatic differentiation efficiency and hepatocyte-like cells with more mature hepatocyte functions. Methods: Successful establishment of high-level HNF4α and FOXA2 co-overexpression in human induced hepatocyte-like cells(hi Hep cells) was verified by flow cytometry, immunofluorescence and RT-PCR. Measurements of albumin(ALB), urea, glucose, indocyanine green(ICG) uptake and release, cytochrome P450(CYP) activity and gene expression were used to analyze mature hepatic functions of hi Hep cells. Results: hi Hep cells efficiently express HNF4α and FOXA2 genes and proteins, exhibit typical epithelial morphology and acquire mature hepatocyte-like cell functions, including ALB secretion, urea production, ICG uptake and release, and glycogen storage. hi Hep cells can be activated by CYP inducers. The percentage of both ALB and α-1-antitrypsin(AAT)-positive cells was approximately 72.6%. The expression levels of hepatocyte-specific genes( ALB, AAT, and CYP1A1) and liver drug transport-related genes( ABCB1, ABCG2, and SLC22A18) in hi Hep cells were significantly higher than those in MSCs-Vector cells. The hi Hep cells did not form tumors after subcutaneous xenograft in BALB/c nude mice after 2 months. Conclusion: This study provides an accessible, feasible and efficient strategy to generate hi Hep cells from MSCs.
基金supported by a grant from the National Natural Science Foundation of China(No.30470457)
文摘Summary: Angiogenic gene therapy and cell-based therapy for peripheral arterial disease (PAD) have been studied intensively currently. This study aimed to investigate whether combining mesenchymal stem cells (MSCs)transplantation with ex vivo human hepatocyte growth factor (HGF) gene transfer was more therapeutically efficient than the MSCs therapy alone in a rat model of hindlimb ischemia. One week after establishing hindlimb ischemia models, Sprague-Dawley (SD) rats were randomized to receive HGF gene-modified MSCs transplantation (HGF-MSC group), untreated MSCs transplantation (MSC group), or PBS injection (PBS group), respectively. Three weeks after injection, angiogenesis was significantly induced by both MSCs and HGF-MSCs transplantation, and capillary density was the highest in the HGF-MSC group. The number of transplanted cell-derived endothelial cells was greater in HGF-MSC group than in MSC group after one week treatment. The expression of angiogenic cytokines such as HGF and VEGF in local ischemic muscles was more abundant in HGF-MSC group than in the other two groups. In vitro, the conditioned media obtained from HGF-MSCs cultures exerted proproliferative and promigratory effects on endothelial cells. It is concluded that HGF gene-modified MSCs transplantation therapy may induce more potent angiogenesis than the MSCs therapy alone. Engraftment of MSCs combined with angiogenic gene delivery may be a promising therapeutic strategy for the treatment of severe PAD.