This paper presents the design of a class of pulses that are based on Hermite functions for ultra-wideband communication systems. The presented class of pulses can not only meet the power spectral emission constraints...This paper presents the design of a class of pulses that are based on Hermite functions for ultra-wideband communication systems. The presented class of pulses can not only meet the power spectral emission constraints of federal communications commission, but also have a short duration for multiple accesses. This paper gives closed form expressions of auto-and cross-correlation functions of the proposed pulses, which can be used to evaluate the performance of the correlator receiver. Furthermore, the paper investigates, under various channel conditions, the spectrum characteristic and the bit error rate of the pulses' wave forms. The investigation conditions include additive white Gaussian noise channels, multipleaccess interference channels, and fading multipath channels. Our results indicate that our systematic algorithm is flexible for designing ultra-wideband pulses that conform to spectral emission constraints and offer good bit error rate performance.展开更多
The object of this paper is to establish the pointwise estimations of approximation of functions in C^1 and their derivatives by Hermite interpolation polynomials. The given orders have been proved to be exact in gen-...The object of this paper is to establish the pointwise estimations of approximation of functions in C^1 and their derivatives by Hermite interpolation polynomials. The given orders have been proved to be exact in gen- eral.展开更多
We reveal that the two-variable Hermite function hm,n, which is the generalized Bargmann representation of the two-mode Fock state, involves quantum entanglement of harmonic oscillator's wave functions. The Schmidt d...We reveal that the two-variable Hermite function hm,n, which is the generalized Bargmann representation of the two-mode Fock state, involves quantum entanglement of harmonic oscillator's wave functions. The Schmidt decomposition of hm,n is derived. It also turns out that hm,n can be generated by windowed Fourier transform of the single-variable Hermite functions. As an application, the wave function of the two-variable Hermite polynomial state S(γ)Hm,n (μa1^+, μa2^+│00〉, which is the minimum uncertainty state for sum squeezing, in ( η│representation is calculated.展开更多
In this paper properties of Hermite matrix polynomials and Hermite matrix functions are studied. The concept ot total set with respect to a matrix functional is introduced and the total property of the Hermite matrix ...In this paper properties of Hermite matrix polynomials and Hermite matrix functions are studied. The concept ot total set with respect to a matrix functional is introduced and the total property of the Hermite matrix polynomials is proved. Asymptotic behaviour of Hermite matrix polynomials is studied and the relationship of Hermite matrix functions with certain matrix differential equations is developed. A new expression of the matrix exponential for a wide class of matrices in terms of Hermite matrix polynomials is proposed.展开更多
In this paper the authors give a definite meaning to any formal trigonometrical series and generalize it to all abstract Hilbert space. Then in the case L-2(-infinity + infinity) they discussed extensively the general...In this paper the authors give a definite meaning to any formal trigonometrical series and generalize it to all abstract Hilbert space. Then in the case L-2(-infinity + infinity) they discussed extensively the generalized expansion problem by Hermite functions, and applied to a non-strictly nonlinear hyperbolic system.展开更多
In this article, we obtain explicit solutions of a linear PDE subject to a class of ra-dial square integrable functions with a monotonically increasing weight function|x|n-1eβ|x|2/2,β ≥ 0, x ∈ Rn. This linear ...In this article, we obtain explicit solutions of a linear PDE subject to a class of ra-dial square integrable functions with a monotonically increasing weight function|x|n-1eβ|x|2/2,β ≥ 0, x ∈ Rn. This linear PDE is obtained from a system of forced Burgers equation via the Cole-Hopf transformation. For any spatial dimension n>1, the solution is expressed in terms of a family of weighted generalized Laguerre polynomials. We also discuss the large time behaviour of the solution of the system of forced Burgers equation.展开更多
A numerical method is proposed to simulate the transverse vibrations of a viscoelastic moving string constituted by an integral law. In the numerical computation, the Galerkin method based on the Hermite functions is ...A numerical method is proposed to simulate the transverse vibrations of a viscoelastic moving string constituted by an integral law. In the numerical computation, the Galerkin method based on the Hermite functions is applied to discretize the state variables, and the Runge- Kutta method is applied to solve the resulting differential-integral equation system. A linear iterative process is designed to compute the integral terms at each time step, which makes the numerical method more efficient and accurate. As examples, nonlinear parametric vibrations of an axially moving viscoelastic string are analyzed.展开更多
By virtue of the operator Hermite polynomial method [Fan H Y and Zhan D H 2014 Chin. Phys. B 23 060301] we find a new special function which is useful in quantum optics theory, whose expansion involves both power-seri...By virtue of the operator Hermite polynomial method [Fan H Y and Zhan D H 2014 Chin. Phys. B 23 060301] we find a new special function which is useful in quantum optics theory, whose expansion involves both power-series and Hermite polynomials, i.e.,min(m,n)∑l=0^min(m,n)n!m!(-1)^l/l!(n-1)!(m-l)!/Hn-l(x)y^m-l≡ n,m(x,y).By virtue of the operator Hermite polynomial method and the technique of integration within ordered product of operators(IWOP) we derive its generating function. The circumstance in which this new special function appears and is applicable is considered.展开更多
In this paper,we develop an efficient Hermite spectral-Galerkin method for nonlocal diffusion equations in unbounded domains.We show that the use of the Hermite basis can de-convolute the troublesome convolutional ope...In this paper,we develop an efficient Hermite spectral-Galerkin method for nonlocal diffusion equations in unbounded domains.We show that the use of the Hermite basis can de-convolute the troublesome convolutional operations involved in the nonlocal Laplacian.As a result,the“stiffness”matrix can be fast computed and assembled via the four-point stable recursive algorithm with O(N^(2))arithmetic operations.Moreover,the singular factor in a typical kernel function can be fully absorbed by the basis.With the aid of Fourier analysis,we can prove the convergence of the scheme.We demonstrate that the recursive computation of the entries of the stiffness matrix can be extended to the two-dimensional nonlocal Laplacian using the isotropic Hermite functions as basis functions.We provide ample numerical results to illustrate the accuracy and efficiency of the proposed algorithms.展开更多
In this paper, we continue the discussion of [12] to establish the Hermite pseudospectral method with weight ω(x) = 1. As an application, we consider the pseudospectral approximation of the reaction-diffusion equat...In this paper, we continue the discussion of [12] to establish the Hermite pseudospectral method with weight ω(x) = 1. As an application, we consider the pseudospectral approximation of the reaction-diffusion equation on the whole line, we prove the existence of the approximate attractor and give the error estimate for the approximate solution.展开更多
The best quadrature formula has been found in the following sense: for a function whose norm of the second derivative is bounded by a given constant and the best quadrature formula for the approximate evaluation of in...The best quadrature formula has been found in the following sense: for a function whose norm of the second derivative is bounded by a given constant and the best quadrature formula for the approximate evaluation of integration of that function can minimize the worst possible error if the values of the function and its derivative at certain nodes are known.The best interpolation formula used to get the quadrature formula above is also found.Moreover,we compare the best quadrature formula with the open compound corrected trapezoidal formula by theoretical analysis and stochastic experiments.展开更多
We present in this paper a unified framework for analyzing the spectral methods in unbounded domains using mapped Jacobi,Laguerre and Hermite functions.A detailed comparison of the convergence rates of these spectral ...We present in this paper a unified framework for analyzing the spectral methods in unbounded domains using mapped Jacobi,Laguerre and Hermite functions.A detailed comparison of the convergence rates of these spectral methods for solutions with typical decay behaviors is carried out,both theoretically and computationally.A brief review on some of the recent advances in the spectral methods for unbounded domains is also presented.展开更多
In this paper we describe a new pseudo-spectral method to solve numerically two and three-dimensional nonlinear diffusion equations over unbounded domains,taking Hermite functions,sinc functions,and rational Chebyshev...In this paper we describe a new pseudo-spectral method to solve numerically two and three-dimensional nonlinear diffusion equations over unbounded domains,taking Hermite functions,sinc functions,and rational Chebyshev polynomials as basis functions.The idea is to discretize the equations by means of differentiation matrices and to relate them to Sylvester-type equations by means of a fourth-order implicit-explicit scheme,being of particular interest the treatment of three-dimensional Sylvester equations that we make.The resulting method is easy to understand and express,and can be implemented in a transparent way by means of a few lines of code.We test numerically the three choices of basis functions,showing the convenience of this new approach,especially when rational Chebyshev polynomials are considered.展开更多
A moving collocation method has been shown to be very effcient for the adaptive solution of second- and fourth-order time-dependent partial differential equations and forms the basis for the two robust codes MOVCOL an...A moving collocation method has been shown to be very effcient for the adaptive solution of second- and fourth-order time-dependent partial differential equations and forms the basis for the two robust codes MOVCOL and MOVCOL4. In this paper, the relations between the method and the traditional collocation and finite volume methods are investigated. It is shown that the moving collocation method inherits desirable properties of both methods: the ease of implementation and high-order convergence of the traditional collocation method and the mass conservation of the finite volume method. Convergence of the method in the maximum norm is proven for general linear two-point boundary value problems. Numerical results are given to demonstrate the convergence order of the method.展开更多
Homogeneous wavelets and framelets have been extensively investigated in the classical theory of wavelets and they are often constructed from refinable functions via the multiresolution analysis. On the other hand, no...Homogeneous wavelets and framelets have been extensively investigated in the classical theory of wavelets and they are often constructed from refinable functions via the multiresolution analysis. On the other hand, nonhomogeneous wavelets and framelets enjoy many desirable theoretical properties and are often intrinsically linked to the refinable structure and multiresolution analysis. In this paper, we provide a comprehensive study on connecting homogeneous wavelets and framelets to nonhomogeneous ones with the refinable structure. This allows us to understand better the structure of homogeneous wavelets and framelets as well as their connections to the refinable structure and multiresolution analysis.展开更多
文摘This paper presents the design of a class of pulses that are based on Hermite functions for ultra-wideband communication systems. The presented class of pulses can not only meet the power spectral emission constraints of federal communications commission, but also have a short duration for multiple accesses. This paper gives closed form expressions of auto-and cross-correlation functions of the proposed pulses, which can be used to evaluate the performance of the correlator receiver. Furthermore, the paper investigates, under various channel conditions, the spectrum characteristic and the bit error rate of the pulses' wave forms. The investigation conditions include additive white Gaussian noise channels, multipleaccess interference channels, and fading multipath channels. Our results indicate that our systematic algorithm is flexible for designing ultra-wideband pulses that conform to spectral emission constraints and offer good bit error rate performance.
文摘The object of this paper is to establish the pointwise estimations of approximation of functions in C^1 and their derivatives by Hermite interpolation polynomials. The given orders have been proved to be exact in gen- eral.
文摘We reveal that the two-variable Hermite function hm,n, which is the generalized Bargmann representation of the two-mode Fock state, involves quantum entanglement of harmonic oscillator's wave functions. The Schmidt decomposition of hm,n is derived. It also turns out that hm,n can be generated by windowed Fourier transform of the single-variable Hermite functions. As an application, the wave function of the two-variable Hermite polynomial state S(γ)Hm,n (μa1^+, μa2^+│00〉, which is the minimum uncertainty state for sum squeezing, in ( η│representation is calculated.
文摘In this paper properties of Hermite matrix polynomials and Hermite matrix functions are studied. The concept ot total set with respect to a matrix functional is introduced and the total property of the Hermite matrix polynomials is proved. Asymptotic behaviour of Hermite matrix polynomials is studied and the relationship of Hermite matrix functions with certain matrix differential equations is developed. A new expression of the matrix exponential for a wide class of matrices in terms of Hermite matrix polynomials is proposed.
文摘In this paper the authors give a definite meaning to any formal trigonometrical series and generalize it to all abstract Hilbert space. Then in the case L-2(-infinity + infinity) they discussed extensively the generalized expansion problem by Hermite functions, and applied to a non-strictly nonlinear hyperbolic system.
基金supported by Research Grants of National Board for Higher Mathematics(Award No:2/40(13)/2010-R&D-II/8911)UGC’s Dr.D.S.Kothari Fellowship(Award No.F.4-2/2006(BSR)/13-440/2011(BSR))
文摘In this article, we obtain explicit solutions of a linear PDE subject to a class of ra-dial square integrable functions with a monotonically increasing weight function|x|n-1eβ|x|2/2,β ≥ 0, x ∈ Rn. This linear PDE is obtained from a system of forced Burgers equation via the Cole-Hopf transformation. For any spatial dimension n>1, the solution is expressed in terms of a family of weighted generalized Laguerre polynomials. We also discuss the large time behaviour of the solution of the system of forced Burgers equation.
基金supported by the National Outstanding Young Scientists Fund of China (No. 10725209)the National ScienceFoundation of China (No. 10672092)+1 种基金Shanghai Municipal Education Commission Scientific Research Project (No. 07ZZ07)Shanghai Leading Academic Discipline Project (No. Y0103).
文摘A numerical method is proposed to simulate the transverse vibrations of a viscoelastic moving string constituted by an integral law. In the numerical computation, the Galerkin method based on the Hermite functions is applied to discretize the state variables, and the Runge- Kutta method is applied to solve the resulting differential-integral equation system. A linear iterative process is designed to compute the integral terms at each time step, which makes the numerical method more efficient and accurate. As examples, nonlinear parametric vibrations of an axially moving viscoelastic string are analyzed.
基金supported by the Natural Science Fund of Education Department of Anhui Province,China(Grant No.KJ2016A590)the Talent Foundation of Hefei University,China(Grant No.15RC11)the National Natural Science Foundation of China(Grant Nos.11247009 and 11574295)
文摘By virtue of the operator Hermite polynomial method [Fan H Y and Zhan D H 2014 Chin. Phys. B 23 060301] we find a new special function which is useful in quantum optics theory, whose expansion involves both power-series and Hermite polynomials, i.e.,min(m,n)∑l=0^min(m,n)n!m!(-1)^l/l!(n-1)!(m-l)!/Hn-l(x)y^m-l≡ n,m(x,y).By virtue of the operator Hermite polynomial method and the technique of integration within ordered product of operators(IWOP) we derive its generating function. The circumstance in which this new special function appears and is applicable is considered.
基金supported in part by the National Natural Science Foundation of China(Grant Nos.11871145,11971016,12131005)The research of L.-L.Wang is partially supported by Singapore MOE AcRF Tier 1(Grant RG 15/21)R.Liu would like to thank Nanyang Technological University for hosting the visit where this research topic was initialised.
文摘In this paper,we develop an efficient Hermite spectral-Galerkin method for nonlocal diffusion equations in unbounded domains.We show that the use of the Hermite basis can de-convolute the troublesome convolutional operations involved in the nonlocal Laplacian.As a result,the“stiffness”matrix can be fast computed and assembled via the four-point stable recursive algorithm with O(N^(2))arithmetic operations.Moreover,the singular factor in a typical kernel function can be fully absorbed by the basis.With the aid of Fourier analysis,we can prove the convergence of the scheme.We demonstrate that the recursive computation of the entries of the stiffness matrix can be extended to the two-dimensional nonlocal Laplacian using the isotropic Hermite functions as basis functions.We provide ample numerical results to illustrate the accuracy and efficiency of the proposed algorithms.
基金Supported by the National Natural Sciences Foundation of China (No. 10771142) and (No. 10671130)
文摘In this paper, we continue the discussion of [12] to establish the Hermite pseudospectral method with weight ω(x) = 1. As an application, we consider the pseudospectral approximation of the reaction-diffusion equation on the whole line, we prove the existence of the approximate attractor and give the error estimate for the approximate solution.
基金supported by the Special Funds for Major State Basic Research Projects(Grant No.G19990328)the National and Zhejiang Provincial Natural Science Foundation of China(Grant No.10471128 and Grant No.101027).
文摘The best quadrature formula has been found in the following sense: for a function whose norm of the second derivative is bounded by a given constant and the best quadrature formula for the approximate evaluation of integration of that function can minimize the worst possible error if the values of the function and its derivative at certain nodes are known.The best interpolation formula used to get the quadrature formula above is also found.Moreover,we compare the best quadrature formula with the open compound corrected trapezoidal formula by theoretical analysis and stochastic experiments.
基金The work of J.S.is partially supported by the NFS grant DMS-0610646The work of L.W.is partially supported by a Start-Up grant from NTU and by Singapore MOE Grant T207B2202Singapore grant NRF 2007IDM-IDM002-010.
文摘We present in this paper a unified framework for analyzing the spectral methods in unbounded domains using mapped Jacobi,Laguerre and Hermite functions.A detailed comparison of the convergence rates of these spectral methods for solutions with typical decay behaviors is carried out,both theoretically and computationally.A brief review on some of the recent advances in the spectral methods for unbounded domains is also presented.
文摘In this paper we describe a new pseudo-spectral method to solve numerically two and three-dimensional nonlinear diffusion equations over unbounded domains,taking Hermite functions,sinc functions,and rational Chebyshev polynomials as basis functions.The idea is to discretize the equations by means of differentiation matrices and to relate them to Sylvester-type equations by means of a fourth-order implicit-explicit scheme,being of particular interest the treatment of three-dimensional Sylvester equations that we make.The resulting method is easy to understand and express,and can be implemented in a transparent way by means of a few lines of code.We test numerically the three choices of basis functions,showing the convenience of this new approach,especially when rational Chebyshev polynomials are considered.
基金supported by Natural Sciences and Engineering Research Council of Canada (Grant No. A8781)National Natural Science Foundation of China (Grant No. 11171274)National Science Foundation of USA (Grant No. DMS-0712935)
文摘A moving collocation method has been shown to be very effcient for the adaptive solution of second- and fourth-order time-dependent partial differential equations and forms the basis for the two robust codes MOVCOL and MOVCOL4. In this paper, the relations between the method and the traditional collocation and finite volume methods are investigated. It is shown that the moving collocation method inherits desirable properties of both methods: the ease of implementation and high-order convergence of the traditional collocation method and the mass conservation of the finite volume method. Convergence of the method in the maximum norm is proven for general linear two-point boundary value problems. Numerical results are given to demonstrate the convergence order of the method.
基金supported by the Natural Sciences and Engineering Research Council of Canada (NSERC Canada) (Grant No. RGP 228051)
文摘Homogeneous wavelets and framelets have been extensively investigated in the classical theory of wavelets and they are often constructed from refinable functions via the multiresolution analysis. On the other hand, nonhomogeneous wavelets and framelets enjoy many desirable theoretical properties and are often intrinsically linked to the refinable structure and multiresolution analysis. In this paper, we provide a comprehensive study on connecting homogeneous wavelets and framelets to nonhomogeneous ones with the refinable structure. This allows us to understand better the structure of homogeneous wavelets and framelets as well as their connections to the refinable structure and multiresolution analysis.