期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
PROBLEM OF EQUALITIES IN EIGENVALUE INEQUALITIES FOR PRODUCTS OF POSITIVE SEMIDEFINITE HERMITIAN MATRICES
1
作者 Xi Boyan(Inner Mongolia Teachers College for Nationalities,Tongliao 028043,PRC) 《Numerical Mathematics A Journal of Chinese Universities(English Series)》 SCIE 2000年第S1期95-97,共3页
Let A∈C<sup>m×n</sup>,set eigenvalues of matrix A with |λ<sub>1</sub> (A)|≥|λ<sub>2</sub>(A)|≥…≥|λ<sub>n</sub>(A)|,write A≥0 if A is a positive semid... Let A∈C<sup>m×n</sup>,set eigenvalues of matrix A with |λ<sub>1</sub> (A)|≥|λ<sub>2</sub>(A)|≥…≥|λ<sub>n</sub>(A)|,write A≥0 if A is a positive semidefinite Hermitian matrix, and denote∧<sub>k</sub> (A)=diag (λ<sub>1</sub>(A),…,λ<sub>k</sub>(A)),∧<sub>(</sub>(n-k).(A)=diag (λ<sub>k+1</sub>(A),…,λ<sub>n</sub>(A))for any k=1, 2,...,n if A≥0. Denote all n order unitary matrices by U<sup>n×n</sup>.Problem of equalities to hold in eigenvalue inequalities for products of matrices 展开更多
关键词 AB In WANG PROBLEM OF EQUALITIES IN EIGENVALUE INEQUALITIES FOR PRODUCTS OF positive semidefinite hermitian matrices
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部