期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
增量Hessian LLE算法研究 被引量:4
1
作者 李厚森 成礼智 《计算机工程》 CAS CSCD 北大核心 2011年第6期159-161,共3页
利用基于Ritz加速的逆幂迭代算法,在经典的Hessian LLE算法基础上提出一种增量LLE算法,能够高效地处理新增的一个或多个样本。该算法的核心思想是将增量流形学习问题转化为一个增量特征值问题,利用数值线性代数的工具进行求解,并分析算... 利用基于Ritz加速的逆幂迭代算法,在经典的Hessian LLE算法基础上提出一种增量LLE算法,能够高效地处理新增的一个或多个样本。该算法的核心思想是将增量流形学习问题转化为一个增量特征值问题,利用数值线性代数的工具进行求解,并分析算法的收敛性。在合成数据集和图像数据集上,验证该增量算法的效率和精确度。 展开更多
关键词 维数约简 流形学习 增量学习 hessianlle算法
下载PDF
流形学习降维算法中一种新动态邻域选择方法 被引量:1
2
作者 徐胜超 《计算机技术与发展》 2022年第1期85-90,共6页
近年来,高维数据算法在诸如机器学习领域以及模式识别当中有着十分广泛的应用。降维算法的目的是为了揭示出在高维数据空间中样本数据的固有的组成特性,关注于寻找原始数据集特征表示中有价值的信息。相邻区域选择问题对流形学习降维算... 近年来,高维数据算法在诸如机器学习领域以及模式识别当中有着十分广泛的应用。降维算法的目的是为了揭示出在高维数据空间中样本数据的固有的组成特性,关注于寻找原始数据集特征表示中有价值的信息。相邻区域选择问题对流形学习降维算法的性能改进至关重要。因此,该文提出一种流形学习降维算法中的新动态邻域选择方法Mod-HLLE(modified Hessian locally linear embedding)。该方法针对Hessian布局线嵌入方法HLLE进行了考察,Mod-HLLE算法是针对高维数据的局部线性嵌入降维算法的改进。Mod-HLLE主要通过计算每个数据点的局部相邻区域参数的方式来完成测量距离和欧几里德距离的评测,再通过动态的相邻区域的尺寸大小来选择新的局部相邻区域。Mod-HLLE在非噪声干扰和噪声干扰情况下,对两类典型3D高维数据集进行降维测试。实验结果表明,Mod-HLLE可以获得很好的几何直观效果,在性能和稳定性方面都优于常见的降维算法,对其他高维数据降维算法的改进也具有很好的参考价值。 展开更多
关键词 流形学习 黑塞局部线性嵌入 数据挖掘 降维算法 相邻区域
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部