In this paper, we consider a minimal value problem and obtain an algebraic inequality. As an application, we obtain the optimal concavity of some Hessian operators and then establish the C2 a priori estimate for a cla...In this paper, we consider a minimal value problem and obtain an algebraic inequality. As an application, we obtain the optimal concavity of some Hessian operators and then establish the C2 a priori estimate for a class of prescribed σ2 curvature measure equations.展开更多
For a class of elliptic Hessian operators, one type of corresponding parabolic Hessian equations is studied on Riemannian manifolds. uniqueness of the admissible solution to the first initial boundary the equations ar...For a class of elliptic Hessian operators, one type of corresponding parabolic Hessian equations is studied on Riemannian manifolds. uniqueness of the admissible solution to the first initial boundary the equations are shown. The existence and value problem for展开更多
This article is devoted to establishing a least square based weak Galerkin method for second order elliptic equations in non-divergence form using a discrete weak Hessian operator.Naturally,the resulting linear system...This article is devoted to establishing a least square based weak Galerkin method for second order elliptic equations in non-divergence form using a discrete weak Hessian operator.Naturally,the resulting linear system is symmetric and positive definite,and thus the algorithm is easy to implement and analyze.Convergence analysis in the H2 equivalent norm is established on an arbitrary shape regular polygonal mesh.A superconvergence result is proved when the coefficient matrix is constant or piecewise constant.Numerical examples are performed which not only verify the theoretical results but also reveal some unexpected superconvergence phenomena.展开更多
The idea of this research is to study different types of connections in an almost Hermite manifold. The connection has been established between linear connection and Riemannian connection. Three new linear connections...The idea of this research is to study different types of connections in an almost Hermite manifold. The connection has been established between linear connection and Riemannian connection. Three new linear connections <span style="white-space:nowrap;">∇</span><sup>1</sup>, <span style="white-space:nowrap;">∇</span><sup>2</sup>, <span style="white-space:nowrap;">∇</span><sup>3</sup> are introduced. The necessary and sufficient condition for <span style="white-space:nowrap;">∇</span><sup>1</sup>, <span style="white-space:nowrap;">∇</span><sup>2</sup>, <span style="white-space:nowrap;">∇</span><sup>3</sup> to be metric is discussed. A new metric <i>s</i><sup>*</sup> (<i>X</i>,<i>Y</i>) has been defined for (<i>M</i><sup><i>n</i></sup>,<i>F</i>,<i>g</i><sup>*</sup>) and additional properties are discussed. It is also proved that for the quarter symmetric connection <span style="white-space:nowrap;">∇ </span>is unique in given manifold. The hessian operator with respect to all connections defined above has also been discussed.展开更多
文摘In this paper, we consider a minimal value problem and obtain an algebraic inequality. As an application, we obtain the optimal concavity of some Hessian operators and then establish the C2 a priori estimate for a class of prescribed σ2 curvature measure equations.
文摘For a class of elliptic Hessian operators, one type of corresponding parabolic Hessian equations is studied on Riemannian manifolds. uniqueness of the admissible solution to the first initial boundary the equations are shown. The existence and value problem for
基金supported by Zhejiang Provincial Natural Science Foundation of China(LY19A010008).
文摘This article is devoted to establishing a least square based weak Galerkin method for second order elliptic equations in non-divergence form using a discrete weak Hessian operator.Naturally,the resulting linear system is symmetric and positive definite,and thus the algorithm is easy to implement and analyze.Convergence analysis in the H2 equivalent norm is established on an arbitrary shape regular polygonal mesh.A superconvergence result is proved when the coefficient matrix is constant or piecewise constant.Numerical examples are performed which not only verify the theoretical results but also reveal some unexpected superconvergence phenomena.
文摘The idea of this research is to study different types of connections in an almost Hermite manifold. The connection has been established between linear connection and Riemannian connection. Three new linear connections <span style="white-space:nowrap;">∇</span><sup>1</sup>, <span style="white-space:nowrap;">∇</span><sup>2</sup>, <span style="white-space:nowrap;">∇</span><sup>3</sup> are introduced. The necessary and sufficient condition for <span style="white-space:nowrap;">∇</span><sup>1</sup>, <span style="white-space:nowrap;">∇</span><sup>2</sup>, <span style="white-space:nowrap;">∇</span><sup>3</sup> to be metric is discussed. A new metric <i>s</i><sup>*</sup> (<i>X</i>,<i>Y</i>) has been defined for (<i>M</i><sup><i>n</i></sup>,<i>F</i>,<i>g</i><sup>*</sup>) and additional properties are discussed. It is also proved that for the quarter symmetric connection <span style="white-space:nowrap;">∇ </span>is unique in given manifold. The hessian operator with respect to all connections defined above has also been discussed.