期刊文献+
共找到287篇文章
< 1 2 15 >
每页显示 20 50 100
Application of Heterogenous Catalysis with TiO2 Photo Irradiated by Sunlight and Latter Activated Sludge System for the Reduction of Vinasse Organic Load
1
作者 Juliana Sanches Carrocci Rodrigo Yuji Mori +4 位作者 Oswaldo Luiz Cobra Guimaraes Rodrigo Fernando dos Santos Salazar Marcos Fernandes de Oliveira Andre Luis de Castro Peixoto Helcio Jose Izario Filho 《Engineering(科研)》 2012年第11期746-760,共15页
Vinasse is the main residue generated during alcohol, sugar and blue rum production by fermentation process. This residue is effluent that could cause serious environmental pollution due to high organic load when is n... Vinasse is the main residue generated during alcohol, sugar and blue rum production by fermentation process. This residue is effluent that could cause serious environmental pollution due to high organic load when is not treated adequately. The aim of this work consists of evaluating the efficiency and application of heterogeneous photocatalysis with TiO2, followed by a biological treatment (activated sludge system) to reduce organic load in the referred effluent. Complete factorial designs indicated the best experimental conditions subsequent to photacatalytic and biological treatments providing a reduction of non-purgeable organic carbon (NPOC) as a variable response. After the photocatalytic process, the sample from the best experiment condition was treated by a biological process in order to verify the degradation efficiency of the effluent organic matter studied according to the hybrid system (Advanced Oxidation Process—Acti- vated Sludge System). This system, which presented more efficiency, had a photochemical treatment of 180 minutes carried out in aerated solutions, pH 9 and effluent in natura, while the biological treatment was performed at pH 8 and sludge concentration of 5 gL–1. The reduction of biochemical oxygen demand (BOD) was >80%. 展开更多
关键词 heterogenous catalysis Activated Sludge Organic Load
下载PDF
Efficient homogenous catalysis of CO_(2) to generate cyclic carbonates by heterogenous and recyclable polypyrazoles 被引量:1
2
作者 Zhen Lu Jie He +4 位作者 Bogeng Guo Yulai Zhao Jingyu Cai Longqiang Xiao Linxi Hou 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2022年第3期110-115,共6页
The cycloaddition between CO_(2)and epoxides to produce cyclic carbonate is an attractive and efficiency pathway for the utilization of CO_(2)as C1 source.The development of catalyst to mediate cycloaddition between C... The cycloaddition between CO_(2)and epoxides to produce cyclic carbonate is an attractive and efficiency pathway for the utilization of CO_(2)as C1 source.The development of catalyst to mediate cycloaddition between CO_(2)and epoxides at low temperature and pressure is still a challenge.Herein,a series of polypyrazoles with glass transition temperature(T_(g))in the range of 42.3-52.5℃ were synthesized and served as catalyst to mediate the cycloaddition of CO_(2)and epoxides by the assistant of tetrabutylammonium bromide.The catalytic behaviors of polypyrazole on the model cycloaddition of CO_(2)to epichlorohydrin,including the reaction parameters optimization and versatility were investigated in detail,and excellent yield(99.9%)and selectivity(99%)were obtained under the optimized reaction conditions of70℃ and 1.0 MPa for 6.0 h.Noteworthily,the polypyrazole acts as homogeneous catalyst during reaction(higher than T_(g)).And under room temperature,polypyrazoles can be easily separated and recovered,which is a promising feature of a heterogeneous catalyst.Furthermore,the reaction mechanism was proposed.The DFT calculation suggested that the formation of hydrogen bond between pyrazole and epoxide greatly reduced the energy barrier,which play an important role in promoting CO_(2)cycloaddition. 展开更多
关键词 Carbon dioxide CO_(2)conversion Cyclic carbonate Heterogeneous catalysis Polypyrazole
下载PDF
Cooperative catalysis of Co single atoms and nanoparticles enables selective CAr-OCH_(3) cleavage for sustainable production of lignin-based cyclohexanols
3
作者 Baoyu Wang Peng Zhou +3 位作者 Ximing Yan Hu Li Hongguo Wu Zehui Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第4期535-549,共15页
In this work,a dual-size MOF-derived Co catalyst(0.2Co_(1-NPs)@NC)composed of single atoms(Co_(1))and highly dispersed nanoparticles(Co NPs)was prepared by in-situ Zn evaporation for the highperformance conversion of ... In this work,a dual-size MOF-derived Co catalyst(0.2Co_(1-NPs)@NC)composed of single atoms(Co_(1))and highly dispersed nanoparticles(Co NPs)was prepared by in-situ Zn evaporation for the highperformance conversion of lignin-derived o-methoxyphenols(lignin oil)to cyclohexanols(up to 97%yield)via cascade demethoxylation and dearomatization.Theoretical calculations elaborated that the dual-size Co catalyst exhibited a cooperative effect in the selective demethoxylation process,in which the Co NPs could initially dissociate hydrogen at lower energies while Co1remarkably facilitated the cleavage of the C_(Ar)-OCH_(3)bond.Moreover,the intramolecular hydrogen bonds formed in the omethoxy-containing phenols were found to result in a decrease in the bond energy of the C_(Ar)-OCH_(3)bond,which was more prone to be activated by the dual-size Co sites.Notably,the pre-hydrogenated intermediate(e.g.,2-methoxycyclohexanol from guaiacol)is difficult to undergo demethoxylation,indicating that the selective C_(Ar)-OCH_(3)bond cleavage is a prerequisite for the synthesis of cyclohexanols.The 0.2Co_(1-NPs)@NC catalyst was highly recyclable with a neglect decline in activity during five consecutive cycles.This cooperative catalytic strategy based on the metal size effect opens new avenues for biomass upgrading via enhanced C-O bond cleavage of high selectivity. 展开更多
关键词 Biomass conversion Heterogeneous catalysis C-O bond cleavage Lignin valorization CYCLOHEXANOLS
下载PDF
Efficient hydrogenolysis of fructose to 1,2-propanediol over bifunctional Ru-WO_(x)-MgO_(y) catalysts under mild reaction conditions via enhancing the chemoselective cleavage of C-C bonds
4
作者 Shuang Luo Tie Shu +6 位作者 Min Mao Haijie Yu Yuxin Zheng Daqian Ding Lingmei Liu Kexin Yao Jianjian Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期311-321,共11页
Selective conversion of fructose to 1,2-propanediol(1,2-PDO)is considered as a sustainable and cost-effective alternative to petroleum-based processes,however,this approach still faces challenges associated with low e... Selective conversion of fructose to 1,2-propanediol(1,2-PDO)is considered as a sustainable and cost-effective alternative to petroleum-based processes,however,this approach still faces challenges associated with low efficiency and harsh reaction conditions.Here,we have successfully synthesized a novel bifunctional Ru-WO_(x)-MgO_(y) catalyst through a facile'one-pot'solvothermal method.Remarkably,this catalyst exhibits exceptional catalytic performances in the conversion of fructose to 1,2-PDO under mild reaction conditions.The yield of 1,2-PDO is up to 56.2%at 140°C for 4 h under an ultra-low hydrogen pressure of only 0.2 MPa,surpassing the reported results in recent literature(below 51%).Comprehensive characterizations and density functional theory(DFT)calculations reveal that the presence of oxygen vacancies in the Ru-WO_(x)-MgO_(y) catalyst,serving as active acidic sites,facilitates the chemoselective cleavage of C-C bonds in fructose,which leads to the generation of active intermediates and ultimately resulted in the high yield of 1,2-PDO. 展开更多
关键词 Biomass FRUCTOSE 1 2-PROPANEDIOL Retroaldol condensation heterogenous catalysis
下载PDF
Synergy of heterogeneous Co/Ni dual atoms enabling selective C-O bond scission of lignin coupling with in-situ N-functionalization 被引量:1
5
作者 Baoyu Wang Jinshu Huang +3 位作者 Hongguo Wu Ximing Yan Yuhe Liao Hu Li 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第5期16-25,共10页
Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst... Selective cleavage of Csp^(2)-OCH_(3)bond in lignin without breaking other types of C-O bonds followed by N-functionalization is fascinating for on-purpose valorization of biomass.Here,a Co/Ni-based dual-atom catalyst CoNiDA@NC prepared by in-situ evaporation and acid-etching of metal species from tailor-made metal–organic frameworks was efficient for reductive upgrading of various lignin-derived phenols to cyclohexanols(88.5%–99.9%yields),which had ca.4 times higher reaction rate than the single-atom catalyst and was superior to state-of-the-art heterogeneous catalysts.The synergistic catalysis of Co/Ni dual atoms facilitated both hydrogen dissociation and hydrogenolysis steps,and could optimize adsorption configuration of lignin-derived methoxylated phenols to further favor the Csp^(2)-OCH_(3)cleavage,as elaborated by theoretical calculations.Notably,the CoNi_(DA)@NC catalyst was highly recyclable,and exhibited excellent demethoxylation performance(77.1%yield)in real lignin monomer mixtures.Via in-situ cascade conversion processes assisted by dual-atom catalysis,various high-value N-containing chemicals,including caprolactams and cyclohexylamines,could be produced from lignin. 展开更多
关键词 Biomass conversion Heterogeneous catalysis LIGNIN Dual-atom catalyst Selective C-ocleavage
下载PDF
Ab initio molecular dynamics simulation reveals the influence of entropy effect on Co@BEA zeolite-catalyzed dehydrogenation of ethane
6
作者 Yumeng Fo Shaojia Song +8 位作者 Kun Yang Xiangyang Ji Luyuan Yang Liusai Huang Xinyu Chen Xueqiu Wu Jian Liu Zhen Zhao Weiyu Song 《Chinese Journal of Catalysis》 SCIE CAS CSCD 2024年第10期195-205,共11页
The C–H bond activation in alkane dehydrogenation reactions is a key step in determining the reaction rate.To understand the impact of entropy,we performed ab initio static and molecular dynamics free energy simulati... The C–H bond activation in alkane dehydrogenation reactions is a key step in determining the reaction rate.To understand the impact of entropy,we performed ab initio static and molecular dynamics free energy simulations of ethane dehydrogenation over Co@BEA zeolite at different temperatures.AIMD simulations showed that a sharp decrease in free energy barrier as temperature increased.Our analysis of the temperature dependence of activation free energies uncovered an unusual entropic effect accompanying the reaction.The unique spatial structures around the Co active site at different temperatures influenced both the extent of charge transfer in the transition state and the arrangement of 3d orbital energy levels.We provided explanations consistent with the principles of thermodynamics and statistical physics.The insights gained at the atomic level have offered a fresh interpretation of the intricate long-range interplay between local chemical reactions and extensive chemical environments. 展开更多
关键词 Ethane dehydrogenation C-H bond activation Ab initio molecular dynamics simulation ENTROPY Heterogeneous catalysis
下载PDF
Toward Next-Generation Heterogeneous Catalysts:Empowering Surface Reactivity Prediction with Machine Learning
7
作者 Xinyan Liu Hong-Jie Peng 《Engineering》 SCIE EI CAS CSCD 2024年第8期25-44,共20页
Heterogeneous catalysis remains at the core of various bulk chemical manufacturing and energy conversion processes,and its revolution necessitates the hunt for new materials with ideal catalytic activities and economi... Heterogeneous catalysis remains at the core of various bulk chemical manufacturing and energy conversion processes,and its revolution necessitates the hunt for new materials with ideal catalytic activities and economic feasibility.Computational high-throughput screening presents a viable solution to this challenge,as machine learning(ML)has demonstrated its great potential in accelerating such processes by providing satisfactory estimations of surface reactivity with relatively low-cost information.This review focuses on recent progress in applying ML in adsorption energy prediction,which predominantly quantifies the catalytic potential of a solid catalyst.ML models that leverage inputs from different categories and exhibit various levels of complexity are classified and discussed.At the end of the review,an outlook on the current challenges and future opportunities of ML-assisted catalyst screening is supplied.We believe that this review summarizes major achievements in accelerating catalyst discovery through ML and can inspire researchers to further devise novel strategies to accelerate materials design and,ultimately,reshape the chemical industry and energy landscape. 展开更多
关键词 Machine learning Heterogeneous catalysis CHEMISORPTION Theoretical simulation Materials design High-throughput screening
下载PDF
Multifunctional SnO_(2) QDs/MXene Heterostructures as Laminar Interlayers for Improved Polysulfide Conversion and Lithium Plating Behavior
8
作者 Shungui Deng Weiwei Sun +4 位作者 Jiawei Tang Mohammad Jafarpour Frank Nüesch Jakob Heier Chuanfang Zhang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期156-169,共14页
Poor cycling stability in lithium–sulfur(Li–S)batteries necessitates advanced electrode/electrolyte design and innovative interlayer architectures.Heterogeneous catalysis has emerged as a promising approach,leveragi... Poor cycling stability in lithium–sulfur(Li–S)batteries necessitates advanced electrode/electrolyte design and innovative interlayer architectures.Heterogeneous catalysis has emerged as a promising approach,leveraging the adsorption and catalytic performance on lithium polysulfides(LiPSs)to inhibit LiPSs shuttling and improve redox kinetics.In this study,we report an ultrathin and laminar SnO_(2)@MXene heterostructure interlayer(SnO_(2)@MX),where SnO_(2) quantum dots(QDs)are uniformly distributed across the MXene layer.The combined structure of SnO_(2) QDs and MXene,along with the creation of numerous active boundary sites with coordination electron environments,plays a critical role in manipulating the catalytic kinetics of sulfur species.The Li–S cell with the SnO_(2)@MX-modified separator not only demonstrates superior electrochemical performance compared to cells with a bare separator but also induces homogeneous Li deposition during cycling.As a result,an areal capacity of 7.6 mAh cm^(-2) under a sulfur loading of 7.5 mg cm^(-2) and a high stability over 500 cycles are achieved.Our work demonstrates a feasible strategy of utilizing a laminar separator interlayer for advanced Li–S batteries awaiting commercialization and may shed light on the understanding of heterostructure catalysis with enhanced reaction kinetics. 展开更多
关键词 Lithium-sulfur battery Heterogeneous catalysis Heterostructure Redox kinetics Lithium dendrites
下载PDF
Importance, features and uses of metal oxide catalysts in heterogeneous catalysis 被引量:9
9
作者 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第11期1627-1636,共10页
This short review paper aims at assembling the present state of the art of the multiuses of metal oxides in heterogeneous catalysis, concerning liquid and gaseous phases of the reactant mixtures on solid catalysts. It... This short review paper aims at assembling the present state of the art of the multiuses of metal oxides in heterogeneous catalysis, concerning liquid and gaseous phases of the reactant mixtures on solid catalysts. It includes the description of the main types of metal oxide catalysts, of their various preparation procedures and of the main reactions catalysed by them (acid-base type, selective and total oxidations, bi-functional catalysis, photocatalysis, biomass treatments, environmental catalysis and some of the numerous industrial applications). Challenges and prospectives are also discussed. 展开更多
关键词 Heterogeneous catalysis Metal oxide catalyst Preparation procedure Acid-base reaction Selective and total oxidation reaction PHOTOcatalysis Environmental catalysis Industrial process
下载PDF
Progress on Porous Ceramic Membrane Reactors for Heterogeneous Catalysis over Ultrafine and Nano-sized Catalysts 被引量:9
10
作者 JIANG Hong MENG Lie CHEN Rizhi JIN Wanqin XING Weihong XU Nanping 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2013年第2期205-215,共11页
Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challengi... Heterogeneous catalysts with ultrafine or nano particle size have currently attracted considerable attentions in the chemical and petrochemical production processes, but their large-scale applications remain challenging because of difficulties associated with their efficient separation from the reaction slurry. A porous ceramic membrane reactor has emerged as a promising method to solve the problem concerning catalysts separation in situ from the reaction mixture and make the production process continuous in heterogeneous catalysis. This article presents a review of the present progress on porous ceramic membrane reactors for heterogeneous catalysis, which covers classification of configurations of porous ceramic membrane reactor, major considerations and some important industrial applications. A special emphasis is paid to major considerations in term of application-oriented ceramic membrane design, optimization of ceramic membrane reactor performance and membrane fouling mechanism. Finally, brief concluding remarks on porous ceramic membrane reactors are given and possible future research interests are also outlined. 展开更多
关键词 porous ceramic membrane membrane reactor heterogeneous catalysis
下载PDF
Heterogeneous catalysis under flow for the 21st century fine chemical industry 被引量:5
11
作者 Rosaria Ciriminna Mario Pagliaro Rafael Luque 《Green Energy & Environment》 SCIE CSCD 2021年第2期161-166,共6页
Due to metal leaching and poor catalyst stability, the chemical industry's fine chemical and pharmaceutical sectors have been historically reluctant to use supported transition metal catalysts to manufacture fine ... Due to metal leaching and poor catalyst stability, the chemical industry's fine chemical and pharmaceutical sectors have been historically reluctant to use supported transition metal catalysts to manufacture fine chemicals and active pharmaceutical ingredients. With the advent of new generation supported metal catalysts and flow chemistry, we argue in this study, this situation is poised to quickly change. Alongside heterogenized metal nanoparticles, both single-site molecular and single-atom catalyst will become ubiquitous. This study offers a critical outlook taking into account both technical and economic aspects. 展开更多
关键词 Fine chemical Heterogeneous catalysis Single atom catalysis Green chemistry Chemical industry
下载PDF
Recent progress on synthesis of ZIF-67-based materials and their application to heterogeneous catalysis 被引量:6
12
作者 Chongxiong Duan Yi Yu Han Hu 《Green Energy & Environment》 SCIE EI CSCD 2022年第1期3-15,共13页
In recent years,an increasing amount of interest has been dedicated to the synthesis and application of ZIF-67-based materials due to their exceptionally high surface area,tunable porosity,and excellent thermal and ch... In recent years,an increasing amount of interest has been dedicated to the synthesis and application of ZIF-67-based materials due to their exceptionally high surface area,tunable porosity,and excellent thermal and chemical stabilities.This review summarizes the latest strategies of synthesizing ZIF-67-based materials by exploring the prominent examples.Then,the recent progress in the applications of ZIF-67-based materials in heterogeneous catalysis,including catalysis of the redox reactions,addition reactions,esterification reactions,Knoevenagel condensations,and hydrogenation-dehydrogenation reactions,has been elaborately discussed.Finally,we end this work by shedding some light on the large-scale industrial production of ZIF-67-based materials and their applications in the future. 展开更多
关键词 Zeolitic imidazolate framework-67 Synthetic methods Heterogeneous catalysis
下载PDF
Recent advances in non-thermal plasma(NTP)catalysis towards C1 chemistry 被引量:4
13
作者 Huanhao Chen Yibing Mu +3 位作者 Shanshan Xu Shaojun Xu Christopher Hardacre Xiaolei Fan 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2020年第8期2010-2021,共12页
C1 chemistrymainly involves the catalytic transformation of C1molecules(i.e.,CO,CO2,CH4 and CH3OH),which usually encounters thermodynamic and/or kinetic limitations.To address these limitations,non-thermal plasma(NTP)... C1 chemistrymainly involves the catalytic transformation of C1molecules(i.e.,CO,CO2,CH4 and CH3OH),which usually encounters thermodynamic and/or kinetic limitations.To address these limitations,non-thermal plasma(NTP)activated heterogeneous catalysis offers a number of advantages,such as relatively mild reaction conditions and energy efficiency,in comparison to the conventional thermal catalysis.This review presents the state-of-the-art for the application of NTP-catalysis towards C1 chemistry,including the CO2 hydrogenation,reforming of CH4 and CH3OH,and water-gas shift(WGS)reaction.In the hybrid NTP-catalyst system,the plasma-catalyst interactions aremultifaceted.Accordingly,this reviewalso includes a brief discussion on the fundamental research into themechanisms of NTP activated catalytic C1 chemistry,such as the advanced characterisation methods(e.g.,in situ diffuse reflectance infrared Fourier transform spectroscopy,DRIFTS),temperatureprogrammed plasma surface reaction(TPPSR),kinetic studies.Finally,prospects for the future research on the development of tailor-made catalysts for NTP-catalysis systems(which will enable the further understanding of its mechanism)and the translation of the hybrid technique to practical applications of catalytic C1 chemistry are discussed. 展开更多
关键词 Non-thermal plasma(NTP) Heterogeneous catalysis C1 chemistry MECHANISM In situ characterisation
下载PDF
Effect of BaNH,CaNH,Mg3N2 on the activity of Co in NH3 decomposition catalysis 被引量:4
14
作者 Pei Yu Han Wu +6 位作者 Jianping Guo Peikun Wang Fei Chang Wenbo Gao Weijin Zhang Lin Liu Ping Chen 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第7期16-21,I0002,共7页
Development of active and non-noble metal-based catalyst for H2 production via NH3 decomposition is crucial for the implementation of NH3 as a H2 carrier.Co-based catalysts have received increasing attention because o... Development of active and non-noble metal-based catalyst for H2 production via NH3 decomposition is crucial for the implementation of NH3 as a H2 carrier.Co-based catalysts have received increasing attention because of its high intrinsic activity and moderate cost.In this work,we examined the effect of BaNH,CaNH and Mg3 N2 on the catalytic activity of Co in the NH3 decomposition reaction.The H2 formation rate ranks the order as Co-BaNH>Co-CaNH>Co-Mg3 N2≈Co/CNTs within a reaction temperature range of 300-550℃.It is worth pointing out that the H2 formation rate of Co-BaNH at 500℃reaches20 mmolH2 gcat-1 min-1,which is comparable to those of the active Ru/Al2 O3(ca.17 mmolH2 gcat-1 min1)and Ru/AC(21 mmolH2 gcat-1 min-1)catalysts under the similar reaction conditions.In-depth research shows that Co-BaNH exhibits an obviously higher intrinsic activity and much lower Ea(46.2 kJ mol-1)than other Co-based catalysts,suggesting that BaNH may play a different role from CaNH,Mg3 N2 and CNTs during the catalytic process.Combined results of XRD,Ar-TPD and XAS show that a[Co-N-Ba]-like intermediate species is likely formed at the interface of Co metal and BaNH,which may lead to a more energy-efficient reaction pathway than that of neat Co metal for NH3 decomposition. 展开更多
关键词 Alkaline earth metal imide COBALT NH3 decomposition Heterogeneous catalysis
下载PDF
Direct carbon dioxide hydrogenation to produce bulk chemicals and liquid fuels via heterogeneous catalysis 被引量:4
15
作者 Zixuan Zhou Peng Gao 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 2022年第8期2045-2056,共12页
The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attenti... The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attention,and substantial advances have been made in this research field in recent years.In this study,we summarize our progress in the rational design and construction of highly efficient catalysts for CO_(2) hydrogenation to methanol,lower olefins,aromatics,and gasolineand jet fuel-range hydrocarbons.The structure‐performance relationship,nature of the active sites,and mechanism of the reactions occurring over these catalysts are explored by combining computational and experimental evidence.The results of this study will promote further fundamental studies and industrial applications of heterogeneous catalysts for CO_(2) hydrogenation to produce bulk chemicals and liquid fuels. 展开更多
关键词 Carbon dioxide hydrogenation Heterogeneous catalysis Coupling reaction Rational design Reaction mechanism
下载PDF
Solid-state NMR studies of sulfonated SBA-15 and the synergistic catalysis of fructose into 5-hydroxymethylfurfural with dimethyl sulfoxide 被引量:2
16
作者 Xin Li Wanling Shen Han Sun 《Magnetic Resonance Letters》 2022年第1期38-47,I0003,共11页
Sulfonic acid functionalized mesoporous SBA-15 was prepared using the grafting method.The structure and acid properties were comprehensively characterized using multi-nuclear and quantitative probe molecule solid-stat... Sulfonic acid functionalized mesoporous SBA-15 was prepared using the grafting method.The structure and acid properties were comprehensively characterized using multi-nuclear and quantitative probe molecule solid-state NMR(SSNMR),together with powder X-ray diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM),N2 adsorption-desorption techniques.Its catalytic performance in the conversion of fructose to 5-hydroxymethylfurfural(HMF)in dimethyl sulfoxide(DMSO)was studied.Catalyst dosage,reaction time,reaction temperature and solvent effect have been investigated.A high yield of HMF up to 93%was obtained at a relatively low temperature of 373 K for 180 min.The Brønsted acid of SBA-15_SO3H together with the solvent DMSO was found to synergistically catalyze the reaction.The catalyst preserved most of its activity after five times reuse and the catalytic activity can be recovered by H2O2 process. 展开更多
关键词 Solid acid Solid-state NMR Molecular sieve Heterogeneous catalysis BIOMASS
下载PDF
Availability of elements for heterogeneous catalysis: Predicting the industrial viability of novel catalysts
17
作者 Anders B. Laursen Jens Sehested +1 位作者 Ib Chorkendorff Peter C. K. Vesborg 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2018年第1期16-26,共11页
Growing concern regarding the sustainability of the chemical industry has driven the developmentof more efficient catalytic reactions.First‐generation estimates of catalyst viability are based oncrustal abundance,whi... Growing concern regarding the sustainability of the chemical industry has driven the developmentof more efficient catalytic reactions.First‐generation estimates of catalyst viability are based oncrustal abundance,which has severe limitations.Herein,we propose a second‐generation approachto predicting the viability of novel catalysts prior to industrial implementation to benefit the globalchemical industry.Using this prediction,we found that a correlation exists between catalyst consumptionand the annual production or price of the catalyst element for11representative industrialcatalytic processes.Based on this correlation,we have introduced two new descriptors for catalystviability,namely,catalyst consumption to availability ratio per annum(CCA)and consumed catalystcost to product value ratio per annum(CCP).Based on evaluations of CCA and CCP for selected industrial reactions,we have grouped catalysts from the case studies according to viability,allowing the identification of general limits of viability based on CCA and CCP.Calculating the CCA and CCP and their comparing with the general limits of viability provides researchers with a novel framework for evaluating whether the cost or physical availability of a new catalyst could be limiting.We have extended this analysis to calculate the predicted limits of economically viable production and product cost for new catalysts.?2018,Dalian Institute of Chemical Physics,Chinese Academy of Sciences.Published by Elsevier B.V.All rights reserved. 展开更多
关键词 Heterogeneous catalysis Industrial catalysis SUSTAINABILITY Element availability Catalyst Catalyst design Element abundance SCALABILITY
下载PDF
Recent Advances in Multifunctional Capsule Catalysts in Heterogeneous Catalysis
18
作者 Xin-hua Gao Qing-xiang Ma +2 位作者 Tian-sheng Zha Jun Bao Noritatsu Tsubaki 《Chinese Journal of Chemical Physics》 SCIE CAS CSCD 2018年第4期393-403,613,共12页
Capsule catalysts composed of pre-shaped core catalysts and layer zeolites have been widely used in the tandem reactions where multiple continuous reactions are combined into one process. They show excellent catalytic... Capsule catalysts composed of pre-shaped core catalysts and layer zeolites have been widely used in the tandem reactions where multiple continuous reactions are combined into one process. They show excellent catalytic performance in heterogeneous catalysis, including the direct synthesis of middle isoparaflins or dimethyl ether from syngas, as compared to the conventional hybrid catalysts. The present review highlights the recent development in the design of capsule catalysts and their catalytic applications in heterogeneous catalysis. The capsule catalyst preparation methods are introduced in detail, such as hydrothermal synthe- sis method, dual-layer method, physically adhesive method and single crystal crystallization method. Purthermore, several new applications of capsule catalysts in heterogeneous cat- alytic processes are presented such as in the direct synthesis of liquefied petroleum gas from syngas, the direct synthesis of para-xylene from syngas and methane dehydroaromatization. In addition, the development in the design of multifunctional capsule catalysts is discussed, which makes the capsule catalyst not just a simple combination of two dill)rent catalysts, but has some special functions such as changing the surface hydrophobic or acid properties of the core catalysts. Finally, the future perspectives of the design and applications of capsule catalysts in heterogeneous catalysis are provided. 展开更多
关键词 Capsule catalyst Tandem reaction ZEOLITE Heterogeneous catalysis
下载PDF
Titanium-rich TS-1 zeolite for highly efficient oxidative desulfurization 被引量:3
19
作者 Risheng Bai Yue Song +3 位作者 Ge Tian Fei Wang Avelino Corma Jihong Yu 《Green Energy & Environment》 SCIE EI CSCD 2023年第1期163-172,共10页
The exploration of highly efficient catalysts based on nano-sized Ti-rich titanosilicate zeolites with controllable active titanium species is of great importance in zeolite catalytic reactions.Herein,we reported an e... The exploration of highly efficient catalysts based on nano-sized Ti-rich titanosilicate zeolites with controllable active titanium species is of great importance in zeolite catalytic reactions.Herein,we reported an efficient and facile synthesis of nano-sized Ti-rich TS-1(MFI)zeolites by replacing tetrabutyl orthotitanate(TBOT)with tetrabutyl orthotitanate tetramer(TBOT-tetramer)as the titanium source.The introduced TBOT-tetramer slowed down the zeolite crystallization process,and accordingly balanced the rate of incorporating Ti and the crystal growth and inhibited the massive formation of anatase species.Notably,the prepared Ti-rich TS-1 zeolite sample had a Si/Ti as low as 27.6 in contrast to conventional one with a molar ratio of 40.The TBOT-tetramer endowed the titanosilicate zeolites with enriched active titanium species and enlarged external surface area.It also impeded the formation of anatase species,resulting in superior catalytic behavior toward the oxidative desulfurization of dibenzothiophene compared with the conventional TS-1 zeolite counterpart prepared with TBOT. 展开更多
关键词 TS-1 ZEOLITE Ti-rich Heterogeneous catalysis Oxidative desulfurization
下载PDF
For more and purer hydrogen-the progress and challenges in water gas shift reaction 被引量:2
20
作者 Limin Zhou Yanyan Liu +8 位作者 Shuling Liu Huanhuan Zhang Xianli Wu Ruofan Shen Tao Liu Jie Gao Kang Sun Baojun Li Jianchun Jiang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第8期363-396,I0010,共35页
The water gas shift(WGS) reaction is a standard reaction that is widely used in industrial hydrogen production and removal of carbon monoxide. The improved catalytic performance of WGS reaction also contributes to amm... The water gas shift(WGS) reaction is a standard reaction that is widely used in industrial hydrogen production and removal of carbon monoxide. The improved catalytic performance of WGS reaction also contributes to ammonia synthesis and other reactions. Advanced catalysts have been developed for both high and low-temperature reactions and are widely used in industry. In recent years, supported metal nanoparticle catalysts have been researched due to their high metal utilization. Low-temperature catalysts have shown promising results, including high selectivity, high shift rates, and higher activity potential. Additionally, significant progress has been made in removing trace CO through the redox reaction in electrolytic cell. This paper reviews the development of WGS reaction catalysts, including the reaction mechanism, catalyst design, and innovative research methods. The catalyst plays a crucial role in the WGS reaction, and this paper provides an instant of catalyst design under different conditions. The progress of catalysts is closely related to the development of advanced characterization techniques.Furthermore, modifying the catalyst surface to enhance activity and significantly increase reaction kinetics is a current research direction. This review goals to stimulate a better understanding of catalyst design, performance optimization, and driving mechanisms, leading to further progress in this field. 展开更多
关键词 Water gas shift reaction Hydrogen production Heterogeneous catalysis Reaction Mechanism Single atomic catalysts
下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部