Many studies revealed that the Earth medium's lateral heterogeneity can cause considerable effects on the co- and post-seismic deformation field. In this study, the threedimensional finite element numerical method ar...Many studies revealed that the Earth medium's lateral heterogeneity can cause considerable effects on the co- and post-seismic deformation field. In this study, the threedimensional finite element numerical method are adopted to quantify the effects of lateral heterogeneity caused by material parameters and fault dip angle on the co- and postseismic deformation in the near- and far-field. Our results show that: 1) the medium's lateral heterogeneity does affect the co-seismic deformation, with the effects increasing with the medium's lateral heterogeneity caused by material parameters; 2) the Lame parameters play a more dominant role than density in the effects caused by lateral heterogeneity; 3) when a fault's dip angle is smaller than 90, the effects of the medium's lateral heterogeneity on the hanging wall are greater than on the footwall; 4) the impact of lateral heterogeneity caused by the viscosity coefficient on the post-seismic deformation can affect a large area, including the near- and far-field.展开更多
This paper gives a systematic introduction to HMM,the heterogeneous multiscale methods,including the fundamental design principles behind the HMM philosophy and the main obstacles that have to be overcome when using H...This paper gives a systematic introduction to HMM,the heterogeneous multiscale methods,including the fundamental design principles behind the HMM philosophy and the main obstacles that have to be overcome when using HMM for a particular problem.This is illustrated by examples from several application areas,including complex fluids,micro-fluidics,solids,interface problems,stochastic problems,and statistically self-similar problems.Emphasis is given to the technical tools,such as the various constrained molecular dynamics,that have been developed,in order to apply HMM to these problems.Examples of mathematical results on the error analysis of HMM are presented.The review ends with a discussion on some of the problems that have to be solved in order to make HMM a more powerful tool.展开更多
The simulation of slope failures,including both failure initiation and development,has been modelled using the material point method(MPM).Numerical case studies involving various slope angles,heterogeneity and rainf...The simulation of slope failures,including both failure initiation and development,has been modelled using the material point method(MPM).Numerical case studies involving various slope angles,heterogeneity and rainfall infiltration are presented.It is demonstrated that,by utilising a constitutive model which encompasses,in a simplified manner,both pre-and post-failure behaviour,the material point method is able to simulate commonly observed failure modes.This is a step towards being able to better quantify slope failure consequence and risk.展开更多
Gradient based UCODE_2005 and data assimilation based on the Ensemble Kalman Filter(EnKF) are two different inverse methods. A synthetic two-dimensional flow case with four no-flow boundaries is used to compare the UC...Gradient based UCODE_2005 and data assimilation based on the Ensemble Kalman Filter(EnKF) are two different inverse methods. A synthetic two-dimensional flow case with four no-flow boundaries is used to compare the UCODE_2005 with the Ensemble Kalman Filter(EnKF) for their efficiency to inversely calculate and calibrate a hydraulic conductivity field based on hydraulic head data. A zonal, random heterogeneous conductivity field is calibrated by assimilating the time series of heads observed in monitoring wells. The study results indicate that the two inverse methods, UCODE_2005 and EnKF, could be used to calibrate the hydraulic conductivity field to a certain degree. More available observations and information about the conductivity field, more accurate inverse results will be obtained for the UCODE_2005. On the other hand, for a realistic zonal heterogeneous hydraulic conductivity field, EnKF can only efficiently determine the hydraulic conductivity field at the first several assimilated time steps. The results obtained by the UCODE_2005 look better than those by the EnKF. This is possibly due to the fact that the UCODE_2005 uses observed head data at every time step, while EnKF can only use observed heads at first several steps due to the filter divergence problem.展开更多
基金co-supported by the National Natural Science Foundation of China (41431069)the State Key Development Program for Basic Research of China (2013CB733304, 2013CB733303)+1 种基金the Doctoral Fund of Ministry of Education of China (20110141130010)China Postdoctoral Science Foundation funded project (2013M542062)
文摘Many studies revealed that the Earth medium's lateral heterogeneity can cause considerable effects on the co- and post-seismic deformation field. In this study, the threedimensional finite element numerical method are adopted to quantify the effects of lateral heterogeneity caused by material parameters and fault dip angle on the co- and postseismic deformation in the near- and far-field. Our results show that: 1) the medium's lateral heterogeneity does affect the co-seismic deformation, with the effects increasing with the medium's lateral heterogeneity caused by material parameters; 2) the Lame parameters play a more dominant role than density in the effects caused by lateral heterogeneity; 3) when a fault's dip angle is smaller than 90, the effects of the medium's lateral heterogeneity on the hanging wall are greater than on the footwall; 4) the impact of lateral heterogeneity caused by the viscosity coefficient on the post-seismic deformation can affect a large area, including the near- and far-field.
基金supported in part by NSF grant DMS99-73341The work of Xiantao Li is supported in part by ONR grant N00014-01-1-0674 and DOE grant DE-FG02-03ER25587The work of Vanden-Eijnden is supported in part by NSF grants DMS02-09959 and DMS02-39625.
文摘This paper gives a systematic introduction to HMM,the heterogeneous multiscale methods,including the fundamental design principles behind the HMM philosophy and the main obstacles that have to be overcome when using HMM for a particular problem.This is illustrated by examples from several application areas,including complex fluids,micro-fluidics,solids,interface problems,stochastic problems,and statistically self-similar problems.Emphasis is given to the technical tools,such as the various constrained molecular dynamics,that have been developed,in order to apply HMM to these problems.Examples of mathematical results on the error analysis of HMM are presented.The review ends with a discussion on some of the problems that have to be solved in order to make HMM a more powerful tool.
基金supported by the Marie Curie Career Integration Grant(No.333177)the "100 Talents" programme of the Chinese Academy of Science+1 种基金the China Scholarship Councilthe Geo-Engineering Section of Delft University of Technology
文摘The simulation of slope failures,including both failure initiation and development,has been modelled using the material point method(MPM).Numerical case studies involving various slope angles,heterogeneity and rainfall infiltration are presented.It is demonstrated that,by utilising a constitutive model which encompasses,in a simplified manner,both pre-and post-failure behaviour,the material point method is able to simulate commonly observed failure modes.This is a step towards being able to better quantify slope failure consequence and risk.
基金supported by the Basic Research Funds for the Central Universities (Grant No. 2652015116)the National Natural Science Foundation of China (Grant Nos. 51209187, 41530316 & 91125024)+1 种基金the National Key Research and Development Program of China (Grant No. 2016YFC0402805)the Beijing Higher Education Young Elite Teacher Project (Grant No. YETP0653)
文摘Gradient based UCODE_2005 and data assimilation based on the Ensemble Kalman Filter(EnKF) are two different inverse methods. A synthetic two-dimensional flow case with four no-flow boundaries is used to compare the UCODE_2005 with the Ensemble Kalman Filter(EnKF) for their efficiency to inversely calculate and calibrate a hydraulic conductivity field based on hydraulic head data. A zonal, random heterogeneous conductivity field is calibrated by assimilating the time series of heads observed in monitoring wells. The study results indicate that the two inverse methods, UCODE_2005 and EnKF, could be used to calibrate the hydraulic conductivity field to a certain degree. More available observations and information about the conductivity field, more accurate inverse results will be obtained for the UCODE_2005. On the other hand, for a realistic zonal heterogeneous hydraulic conductivity field, EnKF can only efficiently determine the hydraulic conductivity field at the first several assimilated time steps. The results obtained by the UCODE_2005 look better than those by the EnKF. This is possibly due to the fact that the UCODE_2005 uses observed head data at every time step, while EnKF can only use observed heads at first several steps due to the filter divergence problem.