期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
The Influence of Convergence Movement on Turbulent Transportation in the Atmospheric Boundary Layer 被引量:15
1
作者 胡隐樵 左洪超 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2003年第5期794-798,共5页
Classical turbulent K closure theory of the atmospheric boundary layer assumes that the vertical turbulent transport flux of any macroscopic quantity is equivalent to that quantity's vertical gradient transport fl... Classical turbulent K closure theory of the atmospheric boundary layer assumes that the vertical turbulent transport flux of any macroscopic quantity is equivalent to that quantity's vertical gradient transport flux. But a cross coupling between the thermodynamic processes and the dynamic processes in the atmospheric system is demonstrated based on the Curier-Prigogine principle of cross coupling of linear thermodynamics. The vertical turbulent transportation of energy and substance in the atmospheric boundary layer is related not only to their macroscopic gradient but also to the convergence and the divergence movement. The transportation of the convergence or divergence movement is important for the atmospheric boundary layer of the heterogeneous underlying surface and the convection boundary layer. Based on this, the turbulent transportation in the atmospheric boundary layer, the energy budget of the heterogeneous underlying surface and the convection boundary layer, and the boundary layer parameterization of land surface processes over the heterogeneous underlying surface are studied. This research offers clues not only for establishing the atmospheric boundary layer theory about the heterogeneous underlying surface, but also for overcoming the difficulties encountered recently in the application of the atmospheric boundary layer theory. 展开更多
关键词 linear thermodynamics turbulent transportation cross coupling atmospheric boundary layer heterogeneous underlying surface
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部