After tracking the historical distribution of the pectinids being very capable of dispersion, it is easy to be found that the bivalves Chlamys (Chlamys) valoniensis (Defrance), Camptonectes (Camptonectes) auritus (von...After tracking the historical distribution of the pectinids being very capable of dispersion, it is easy to be found that the bivalves Chlamys (Chlamys) valoniensis (Defrance), Camptonectes (Camptonectes) auritus (von Schlo-theim) and Chlamys (Chlamys) textoria (von Schlotheim) first occurred in the Late Rhaetian, the end of the Triassic, or the earliest Hettangian, the earliest Jurassic of western Europe, and subsequently they spread into the southeastern coast of Palaeo-pacific through the Hispanic Corridor during the Hettangian or a little later. It has demonstrated that the Hispanic epicontinental seaway became established along the rifting area between North America and South America and Africa of the Pangaean supercontinent as early as Hettangian or even earlier, connecting western Tethys and eastern Palaeo-pacific and providing a corridor for migration and exchange of creatures between Tethys and Palaeo-pacific.展开更多
The sequence stratigraphy of the Jurassic coal measures of northwestern China has been studied based on data from outcrop and borehole sections. Because of the geological background and the diversity of basin types, s...The sequence stratigraphy of the Jurassic coal measures of northwestern China has been studied based on data from outcrop and borehole sections. Because of the geological background and the diversity of basin types, such as isochronisms of coal seams and recognition of key sequence boundaries, it is rare to summarize and correlate sequence structure and framework. The types and recognition characteristics of the sequence boundaries of the Jurassic coal measures are revealed by comparing climatic characteristics, structural styles and the base level cycle. A total of five third-order sequences and 15 systems tracts have been subdivided and the sequence stratigraphic framework has been reconstructed confirming that the thick coals accumulated in the late stage of transgression system tracts of sequence I (SQ I) and sequence III (SQ III). This idea is of important academic significance for instructing coal resources exploration, and enhancing geological effects of prospecting engineering. It is also of practical significance for guaranteeing construction of the large-scale coal production base in northwestern China, accelerating the westward development of the coal industry stratagem.展开更多
The Triassic-Jurassic (Tr-J) boundary marks a major extinction event, which (~200 Ma)resulted in global extinctions of fauna and flora both in the marine and terrestrial realms. There prevail great challenges in ...The Triassic-Jurassic (Tr-J) boundary marks a major extinction event, which (~200 Ma)resulted in global extinctions of fauna and flora both in the marine and terrestrial realms. There prevail great challenges in determining the exact location of the terrestrial Tr-J boundary, because of endemism of taxa and the scarcity of fossils in terrestrial settings leading to difficulties in linking marine and terrestrial sedimentary successions. Investigation based on palynology and bivalves has been carried out over a 1113 m thick section, which is subdivided into 132 beds, along the Haojiagou valley on the southern margin of the Junggar Basin of the northern Xinjiang, northwestern China. The terrestrial Lower Jurassic is conformably resting on the Upper Triassic strata. The Upper Triassic covers the Huangshanjie Formation overlaid by the Haojiagou Formation, while the Lower Jurassic comprises the Badaowan Formation followed by the Sangonghe Formation. Fifty six pollen and spore taxa and one algal taxon were identified from the sediments. Based on the key-species and abundance of spores and pollen, three zones were erected: the Late Triassic (Rhaetian) Aratrisporites-Alisporites Assemblage, the Early Jurassic (Hettangian) Perinopollenites-Pinuspollenites Assemblage, and the Sinemurian Perinopollenites-Cycadopites Assemblage. The Tr-J boundary is placed between bed 44and 45 coincident with the boundary between the Haojiagou and Badaowan formations. Beds with Ferganoconcha (?), Unio-Ferganoconcha and Waagenoperna-Yananoconcha bivalve assemblages are recognized. The Ferganoconcha (?) bed is limited to the upper Haojiagou Formation,Unio- Ferganoconcha and Waagenoperna- Yananoconcha assemblages are present in the middle and upper members of the Badaowan Formation. The sedimentary succession is interpreted as terrestrial with two mainly lake deposit intervals within Haojiagou and Badaowan formations, yielding fresh water algae and bivalves. However, the presence of brackish water algae Tasmanites and the marine-littoral facies bivalve Waagenoperna from the Badaowan Formation indicate that the Junggar Basin was influenced by sea water caused by transgressions from the northern Tethys, during the Sinemurian.展开更多
基金This work was supported by the National Natural Science Foundation of China (Grant No. 40072004)the National and CAS Tibet Research Project (Grant No. G1998040801-01) Laboratory of Palaeobiology and Stratigraphy of Nanjing Institute of Geology and Pa
文摘After tracking the historical distribution of the pectinids being very capable of dispersion, it is easy to be found that the bivalves Chlamys (Chlamys) valoniensis (Defrance), Camptonectes (Camptonectes) auritus (von Schlo-theim) and Chlamys (Chlamys) textoria (von Schlotheim) first occurred in the Late Rhaetian, the end of the Triassic, or the earliest Hettangian, the earliest Jurassic of western Europe, and subsequently they spread into the southeastern coast of Palaeo-pacific through the Hispanic Corridor during the Hettangian or a little later. It has demonstrated that the Hispanic epicontinental seaway became established along the rifting area between North America and South America and Africa of the Pangaean supercontinent as early as Hettangian or even earlier, connecting western Tethys and eastern Palaeo-pacific and providing a corridor for migration and exchange of creatures between Tethys and Palaeo-pacific.
基金supported by the Major National S&T(Science and Technology) Program of China(2011ZX05009-002)the National Natural Science Foundation of China (41002049, 41030213)the Fundamental Research Funds for the Central Universities in China (2010YD09)
文摘The sequence stratigraphy of the Jurassic coal measures of northwestern China has been studied based on data from outcrop and borehole sections. Because of the geological background and the diversity of basin types, such as isochronisms of coal seams and recognition of key sequence boundaries, it is rare to summarize and correlate sequence structure and framework. The types and recognition characteristics of the sequence boundaries of the Jurassic coal measures are revealed by comparing climatic characteristics, structural styles and the base level cycle. A total of five third-order sequences and 15 systems tracts have been subdivided and the sequence stratigraphic framework has been reconstructed confirming that the thick coals accumulated in the late stage of transgression system tracts of sequence I (SQ I) and sequence III (SQ III). This idea is of important academic significance for instructing coal resources exploration, and enhancing geological effects of prospecting engineering. It is also of practical significance for guaranteeing construction of the large-scale coal production base in northwestern China, accelerating the westward development of the coal industry stratagem.
基金supported by Special Basic Research Program of Ministry of Science and Technology of China (Grant No. 2006FY120300)National Committee of Stratigraphy of China. V. Vajda acknowledges the financial support provided by Swedish Research Council (VR, Grant No. 2007-4509)+1 种基金V. Vajda is a Swedish Royal Academy of Sciences Research Fellow founded through the Knut and Alice Wallenbergs Foundationa contribution to UNESCO-IUGS IGCP Project 506
文摘The Triassic-Jurassic (Tr-J) boundary marks a major extinction event, which (~200 Ma)resulted in global extinctions of fauna and flora both in the marine and terrestrial realms. There prevail great challenges in determining the exact location of the terrestrial Tr-J boundary, because of endemism of taxa and the scarcity of fossils in terrestrial settings leading to difficulties in linking marine and terrestrial sedimentary successions. Investigation based on palynology and bivalves has been carried out over a 1113 m thick section, which is subdivided into 132 beds, along the Haojiagou valley on the southern margin of the Junggar Basin of the northern Xinjiang, northwestern China. The terrestrial Lower Jurassic is conformably resting on the Upper Triassic strata. The Upper Triassic covers the Huangshanjie Formation overlaid by the Haojiagou Formation, while the Lower Jurassic comprises the Badaowan Formation followed by the Sangonghe Formation. Fifty six pollen and spore taxa and one algal taxon were identified from the sediments. Based on the key-species and abundance of spores and pollen, three zones were erected: the Late Triassic (Rhaetian) Aratrisporites-Alisporites Assemblage, the Early Jurassic (Hettangian) Perinopollenites-Pinuspollenites Assemblage, and the Sinemurian Perinopollenites-Cycadopites Assemblage. The Tr-J boundary is placed between bed 44and 45 coincident with the boundary between the Haojiagou and Badaowan formations. Beds with Ferganoconcha (?), Unio-Ferganoconcha and Waagenoperna-Yananoconcha bivalve assemblages are recognized. The Ferganoconcha (?) bed is limited to the upper Haojiagou Formation,Unio- Ferganoconcha and Waagenoperna- Yananoconcha assemblages are present in the middle and upper members of the Badaowan Formation. The sedimentary succession is interpreted as terrestrial with two mainly lake deposit intervals within Haojiagou and Badaowan formations, yielding fresh water algae and bivalves. However, the presence of brackish water algae Tasmanites and the marine-littoral facies bivalve Waagenoperna from the Badaowan Formation indicate that the Junggar Basin was influenced by sea water caused by transgressions from the northern Tethys, during the Sinemurian.