期刊文献+
共找到269,837篇文章
< 1 2 250 >
每页显示 20 50 100
MOALG: A Metaheuristic Hybrid of Multi-Objective Ant Lion Optimizer and Genetic Algorithm for Solving Design Problems
1
作者 Rashmi Sharma Ashok Pal +4 位作者 Nitin Mittal Lalit Kumar Sreypov Van Yunyoung Nam Mohamed Abouhawwash 《Computers, Materials & Continua》 SCIE EI 2024年第3期3489-3510,共22页
This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic ... This study proposes a hybridization of two efficient algorithm’s Multi-objective Ant Lion Optimizer Algorithm(MOALO)which is a multi-objective enhanced version of the Ant Lion Optimizer Algorithm(ALO)and the Genetic Algorithm(GA).MOALO version has been employed to address those problems containing many objectives and an archive has been employed for retaining the non-dominated solutions.The uniqueness of the hybrid is that the operators like mutation and crossover of GA are employed in the archive to update the solutions and later those solutions go through the process of MOALO.A first-time hybrid of these algorithms is employed to solve multi-objective problems.The hybrid algorithm overcomes the limitation of ALO of getting caught in the local optimum and the requirement of more computational effort to converge GA.To evaluate the hybridized algorithm’s performance,a set of constrained,unconstrained test problems and engineering design problems were employed and compared with five well-known computational algorithms-MOALO,Multi-objective Crystal Structure Algorithm(MOCryStAl),Multi-objective Particle Swarm Optimization(MOPSO),Multi-objective Multiverse Optimization Algorithm(MOMVO),Multi-objective Salp Swarm Algorithm(MSSA).The outcomes of five performance metrics are statistically analyzed and the most efficient Pareto fronts comparison has been obtained.The proposed hybrid surpasses MOALO based on the results of hypervolume(HV),Spread,and Spacing.So primary objective of developing this hybrid approach has been achieved successfully.The proposed approach demonstrates superior performance on the test functions,showcasing robust convergence and comprehensive coverage that surpasses other existing algorithms. 展开更多
关键词 Multi-objective optimization genetic algorithm ant lion optimizer METAheuristic
下载PDF
A Comparative Study of Metaheuristic Optimization Algorithms for Solving Real-World Engineering Design Problems
2
作者 Elif Varol Altay Osman Altay Yusuf Ovik 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第4期1039-1094,共56页
Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as ... Real-world engineering design problems with complex objective functions under some constraints are relatively difficult problems to solve.Such design problems are widely experienced in many engineering fields,such as industry,automotive,construction,machinery,and interdisciplinary research.However,there are established optimization techniques that have shown effectiveness in addressing these types of issues.This research paper gives a comparative study of the implementation of seventeen new metaheuristic methods in order to optimize twelve distinct engineering design issues.The algorithms used in the study are listed as:transient search optimization(TSO),equilibrium optimizer(EO),grey wolf optimizer(GWO),moth-flame optimization(MFO),whale optimization algorithm(WOA),slimemould algorithm(SMA),harris hawks optimization(HHO),chimp optimization algorithm(COA),coot optimization algorithm(COOT),multi-verse optimization(MVO),arithmetic optimization algorithm(AOA),aquila optimizer(AO),sine cosine algorithm(SCA),smell agent optimization(SAO),and seagull optimization algorithm(SOA),pelican optimization algorithm(POA),and coati optimization algorithm(CA).As far as we know,there is no comparative analysis of recent and popular methods against the concrete conditions of real-world engineering problems.Hence,a remarkable research guideline is presented in the study for researchersworking in the fields of engineering and artificial intelligence,especiallywhen applying the optimization methods that have emerged recently.Future research can rely on this work for a literature search on comparisons of metaheuristic optimization methods in real-world problems under similar conditions. 展开更多
关键词 Metaheuristic optimization algorithms real-world engineering design problems multidisciplinary design optimization problems
下载PDF
Systematic Review:Load Balancing in Cloud Computing by Using Metaheuristic Based Dynamic Algorithms
3
作者 Darakhshan Syed Ghulam Muhammad Safdar Rizvi 《Intelligent Automation & Soft Computing》 2024年第3期437-476,共40页
Cloud Computing has the ability to provide on-demand access to a shared resource pool.It has completely changed the way businesses are managed,implement applications,and provide services.The rise in popularity has led... Cloud Computing has the ability to provide on-demand access to a shared resource pool.It has completely changed the way businesses are managed,implement applications,and provide services.The rise in popularity has led to a significant increase in the user demand for services.However,in cloud environments efficient load balancing is essential to ensure optimal performance and resource utilization.This systematic review targets a detailed description of load balancing techniques including static and dynamic load balancing algorithms.Specifically,metaheuristic-based dynamic load balancing algorithms are identified as the optimal solution in case of increased traffic.In a cloud-based context,this paper describes load balancing measurements,including the benefits and drawbacks associated with the selected load balancing techniques.It also summarizes the algorithms based on implementation,time complexity,adaptability,associated issue(s),and targeted QoS parameters.Additionally,the analysis evaluates the tools and instruments utilized in each investigated study.Moreover,comparative analysis among static,traditional dynamic and metaheuristic algorithms based on response time by using the CloudSim simulation tool is also performed.Finally,the key open problems and potential directions for the state-of-the-art metaheuristic-based approaches are also addressed. 展开更多
关键词 Cloud computing load balancing metaheuristic algorithm dynamic algorithm load balancer QOS
下载PDF
BHJO: A Novel Hybrid Metaheuristic Algorithm Combining the Beluga Whale, Honey Badger, and Jellyfish Search Optimizers for Solving Engineering Design Problems
4
作者 Farouq Zitouni Saad Harous +4 位作者 Abdulaziz S.Almazyad Ali Wagdy Mohamed Guojiang Xiong Fatima Zohra Khechiba Khadidja  Kherchouche 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第10期219-265,共47页
Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengt... Hybridizing metaheuristic algorithms involves synergistically combining different optimization techniques to effectively address complex and challenging optimization problems.This approach aims to leverage the strengths of multiple algorithms,enhancing solution quality,convergence speed,and robustness,thereby offering a more versatile and efficient means of solving intricate real-world optimization tasks.In this paper,we introduce a hybrid algorithm that amalgamates three distinct metaheuristics:the Beluga Whale Optimization(BWO),the Honey Badger Algorithm(HBA),and the Jellyfish Search(JS)optimizer.The proposed hybrid algorithm will be referred to as BHJO.Through this fusion,the BHJO algorithm aims to leverage the strengths of each optimizer.Before this hybridization,we thoroughly examined the exploration and exploitation capabilities of the BWO,HBA,and JS metaheuristics,as well as their ability to strike a balance between exploration and exploitation.This meticulous analysis allowed us to identify the pros and cons of each algorithm,enabling us to combine them in a novel hybrid approach that capitalizes on their respective strengths for enhanced optimization performance.In addition,the BHJO algorithm incorporates Opposition-Based Learning(OBL)to harness the advantages offered by this technique,leveraging its diverse exploration,accelerated convergence,and improved solution quality to enhance the overall performance and effectiveness of the hybrid algorithm.Moreover,the performance of the BHJO algorithm was evaluated across a range of both unconstrained and constrained optimization problems,providing a comprehensive assessment of its efficacy and applicability in diverse problem domains.Similarly,the BHJO algorithm was subjected to a comparative analysis with several renowned algorithms,where mean and standard deviation values were utilized as evaluation metrics.This rigorous comparison aimed to assess the performance of the BHJOalgorithmabout its counterparts,shedding light on its effectiveness and reliability in solving optimization problems.Finally,the obtained numerical statistics underwent rigorous analysis using the Friedman post hoc Dunn’s test.The resulting numerical values revealed the BHJO algorithm’s competitiveness in tackling intricate optimization problems,affirming its capability to deliver favorable outcomes in challenging scenarios. 展开更多
关键词 Global optimization hybridization of metaheuristics beluga whale optimization honey badger algorithm jellyfish search optimizer chaotic maps opposition-based learning
下载PDF
Exact and heuristic formulae to compute the geodetic height from the ellipse equation
5
作者 Mohamed Eleiche Ahmed Hamdi Mansi 《Geodesy and Geodynamics》 EI CSCD 2024年第2期150-155,共6页
The conversion of the cartesian coordinates of a point to its geodetic equivalent coordinates in reference to the geodetic ellipsoid is one of the main challenges in geodesy.The ellipse equation in the meridian plane ... The conversion of the cartesian coordinates of a point to its geodetic equivalent coordinates in reference to the geodetic ellipsoid is one of the main challenges in geodesy.The ellipse equation in the meridian plane significantly influences the value of the geodetic coordinates.This research analyzes this influence and how it can contribute to their solutions.The study investigates the mathematical relation between them and presents an exact formula relating to the geodetic height and the ellipse equation.In addition,a heuristic formula for the relation between the geodetic height and the ellipse equation is proposed,which is independent of the geodetic latitude and has a relative accuracy better than 99.9 %.The calculation is stable,and the cost is low. 展开更多
关键词 Ellipse equation Geodetic height heuristic geodetic height
下载PDF
Improved STNModels and Heuristic Rules for Cooperative Scheduling in Automated Container Terminals
6
作者 Hongyan Xia Jin Zhu 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1637-1661,共25页
Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to copewith the development trend of large-scale ships. In order to improve the solution efficiency of the exis... Improving the cooperative scheduling efficiency of equipment is the key for automated container terminals to copewith the development trend of large-scale ships. In order to improve the solution efficiency of the existing spacetimenetwork (STN) model for the cooperative scheduling problem of yard cranes (YCs) and automated guidedvehicles (AGVs) and extend its application scenarios, two improved STN models are proposed. The flow balanceconstraints in the original model are decomposed, and the trajectory constraints of YCs and AGVs are added toacquire the model STN_A. The coupling constraint in STN_A is updated, and buffer constraints are added toSTN_A so that themodel STN_B is built.As the size of the problem increases, the solution speed of CPLEX becomesthe bottleneck. So a heuristic method containing three groups of heuristic rules is designed to obtain a near-optimalsolution quickly. Experimental results showthat the computation time of STN_A is shortened by 49.47% on averageand the gap is reduced by 1.69% on average compared with the original model. The gap between the solution ofthe heuristic rules and the solution of CPLEX is less than 3.50%, and the solution time of the heuristic rules is onaverage 99.85% less than the solution time of CPLEX. Compared with STN_A, the computation time for solvingSTN_B increases by 58.93% on average. 展开更多
关键词 Automated container terminal BUFFER cooperative scheduling heuristic rules space-time network
下载PDF
Predicting Rock Burst in Underground Engineering Leveraging a Novel Metaheuristic-Based LightGBM Model
7
作者 Kai Wang Biao He +1 位作者 Pijush Samui Jian Zhou 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第7期229-253,共25页
Rock bursts represent a formidable challenge in underground engineering,posing substantial risks to both infrastructure and human safety.These sudden and violent failures of rock masses are characterized by the rapid ... Rock bursts represent a formidable challenge in underground engineering,posing substantial risks to both infrastructure and human safety.These sudden and violent failures of rock masses are characterized by the rapid release of accumulated stress within the rock,leading to severe seismic events and structural damage.Therefore,the development of reliable prediction models for rock bursts is paramount to mitigating these hazards.This study aims to propose a tree-based model—a Light Gradient Boosting Machine(LightGBM)—to predict the intensity of rock bursts in underground engineering.322 actual rock burst cases are collected to constitute an exhaustive rock burst dataset,which serves to train the LightGBMmodel.Two population-basedmetaheuristic algorithms are used to optimize the hyperparameters of the LightGBM model.Finally,the sensitivity analysis is used to identify the predominant factors that may incur the occurrence of rock bursts.The results show that the population-based metaheuristic algorithms have a good ability to search out the optimal hyperparameters of the LightGBM model.The developed LightGBM model yields promising performance in predicting the intensity of rock bursts,with which accuracy on training and testing sets are 0.972 and 0.944,respectively.The sensitivity analysis discloses that the risk of occurring rock burst is significantly sensitive to three factors:uniaxial compressive strength(σc),stress concentration factor(SCF),and elastic strain energy index(Wet).Moreover,this study clarifies the particular impact of these three factors on the intensity of rock bursts through the partial dependence plot. 展开更多
关键词 Rock burst prediction LightGBM coati optimization algorithm pelican optimization algorithm partial dependence plot
下载PDF
Stability prediction of hard rock pillar using support vector machine optimized by three metaheuristic algorithms 被引量:6
8
作者 Chuanqi Li Jian Zhou +1 位作者 Kun Du Daniel Dias 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第8期1019-1036,共18页
Hard rock pillar is one of the important structures in engineering design and excavation in underground mines.Accurate and convenient prediction of pillar stability is of great significance for underground space safet... Hard rock pillar is one of the important structures in engineering design and excavation in underground mines.Accurate and convenient prediction of pillar stability is of great significance for underground space safety.This paper aims to develop hybrid support vector machine(SVM)models improved by three metaheuristic algorithms known as grey wolf optimizer(GWO),whale optimization algorithm(WOA)and sparrow search algorithm(SSA)for predicting the hard rock pillar stability.An integrated dataset containing 306 hard rock pillars was established to generate hybrid SVM models.Five parameters including pillar height,pillar width,ratio of pillar width to height,uniaxial compressive strength and pillar stress were set as input parameters.Two global indices,three local indices and the receiver operating characteristic(ROC)curve with the area under the ROC curve(AUC)were utilized to evaluate all hybrid models’performance.The results confirmed that the SSA-SVM model is the best prediction model with the highest values of all global indices and local indices.Nevertheless,the performance of the SSASVM model for predicting the unstable pillar(AUC:0.899)is not as good as those for stable(AUC:0.975)and failed pillars(AUC:0.990).To verify the effectiveness of the proposed models,5 field cases were investigated in a metal mine and other 5 cases were collected from several published works.The validation results indicated that the SSA-SVM model obtained a considerable accuracy,which means that the combination of SVM and metaheuristic algorithms is a feasible approach to predict the pillar stability. 展开更多
关键词 Underground pillar stability Hard rock Support vector machine Metaheuristic algorithms
下载PDF
Skill Optimization Algorithm:A New Human-Based Metaheuristic Technique 被引量:3
9
作者 Hadi Givi Marie Hubalovska 《Computers, Materials & Continua》 SCIE EI 2023年第1期179-202,共24页
Metaheuristic algorithms are widely used in solving optimization problems.In this paper,a new metaheuristic algorithm called Skill Optimization Algorithm(SOA)is proposed to solve optimization problems.The fundamental ... Metaheuristic algorithms are widely used in solving optimization problems.In this paper,a new metaheuristic algorithm called Skill Optimization Algorithm(SOA)is proposed to solve optimization problems.The fundamental inspiration in designing SOA is human efforts to acquire and improve skills.Various stages of SOA are mathematically modeled in two phases,including:(i)exploration,skill acquisition from experts and(ii)exploitation,skill improvement based on practice and individual effort.The efficiency of SOA in optimization applications is analyzed through testing this algorithm on a set of twenty-three standard benchmark functions of a variety of unimodal,high-dimensional multimodal,and fixed-dimensional multimodal types.The optimization results show that SOA,by balancing exploration and exploitation,is able to provide good performance and appropriate solutions for optimization problems.In addition,the performance of SOA in optimization is compared with ten metaheuristic algorithms to evaluate the quality of the results obtained by the proposed approach.Analysis and comparison of the obtained simulation results show that the proposed SOA has a superior performance over the considered algorithms and achievesmuch more competitive results. 展开更多
关键词 Optimization human-based SKILL EXPLORATION EXPLOITATION metaheuristic algorithm
下载PDF
Migration Algorithm:A New Human-BasedMetaheuristic Approach for Solving Optimization Problems 被引量:1
10
作者 Pavel Trojovsky Mohammad Dehghani 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第11期1695-1730,共36页
This paper introduces a newmetaheuristic algorithmcalledMigration Algorithm(MA),which is helpful in solving optimization problems.The fundamental inspiration of MA is the process of human migration,which aims to impro... This paper introduces a newmetaheuristic algorithmcalledMigration Algorithm(MA),which is helpful in solving optimization problems.The fundamental inspiration of MA is the process of human migration,which aims to improve job,educational,economic,and living conditions,and so on.Themathematicalmodeling of the proposed MAis presented in two phases to empower the proposed approach in exploration and exploitation during the search process.In the exploration phase,the algorithm population is updated based on the simulation of choosing the migration destination among the available options.In the exploitation phase,the algorithm population is updated based on the efforts of individuals in the migration destination to adapt to the new environment and improve their conditions.MA’s performance is evaluated on fifty-two standard benchmark functions consisting of unimodal and multimodal types and the CEC 2017 test suite.In addition,MA’s results are compared with the performance of twelve well-known metaheuristic algorithms.The optimization results show the proposed MA approach’s high ability to balance exploration and exploitation to achieve suitable solutions for optimization problems.The analysis and comparison of the simulation results show that MA has provided superior performance against competitor algorithms in most benchmark functions.Also,the implementation of MA on four engineering design problems indicates the effective capability of the proposed approach in handling optimization tasks in real-world applications. 展开更多
关键词 Optimization METAheuristic MIGRATION human-based algorithm exploration EXPLOITATION
下载PDF
Heuristic-Based Optimal Load Frequency Control with Offsite Backup Controllers in Interconnected Microgrids
11
作者 Aijia Ding Tingzhang Liu 《Energy Engineering》 EI 2024年第12期3735-3759,共25页
The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order ... The primary factor contributing to frequency instability in microgrids is the inherent intermittency of renewable energy sources.This paper introduces novel dual-backup controllers utilizing advanced fractional order proportional integral derivative(FOPID)controllers to enhance frequency and tie-line power stability in microgrids amid increasing renewable energy integration.To improve load frequency control,the proposed controllers are applied to a two-area interconnectedmicrogrid system incorporating diverse energy sources,such as wind turbines,photovoltaic cells,diesel generators,and various storage technologies.A novelmeta-heuristic algorithm is adopted to select the optimal parameters of the proposed controllers.The efficacy of the advanced FOPID controllers is demonstrated through comparative analyses against traditional proportional integral derivative(PID)and FOPID controllers,showcasing superior performance inmanaging systemfluctuations.The optimization algorithm is also evaluated against other artificial intelligent methods for parameter optimization,affirming the proposed solution’s efficiency.The robustness of the intelligent controllers against system uncertainties is further validated under extensive power disturbances,proving their capability to maintain grid stability.The dual-controller configuration ensures redundancy,allowing them to operate as mutual backups,enhancing system reliability.This research underlines the importance of sophisticated control strategies for future-proofing microgrid operations against the backdrop of evolving energy landscapes. 展开更多
关键词 Fractional order PID interconnected microgrids load frequency control meta-heuristic algorithm parameter optimization
下载PDF
Fitness Sharing Chaotic Particle Swarm Optimization (FSCPSO): A Metaheuristic Approach for Allocating Dynamic Virtual Machine (VM) in Fog Computing Architecture
12
作者 Prasanna Kumar Kannughatta Ranganna Siddesh Gaddadevara Matt +2 位作者 Chin-Ling Chen Ananda Babu Jayachandra Yong-Yuan Deng 《Computers, Materials & Continua》 SCIE EI 2024年第8期2557-2578,共22页
In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications... In recent decades,fog computing has played a vital role in executing parallel computational tasks,specifically,scientific workflow tasks.In cloud data centers,fog computing takes more time to run workflow applications.Therefore,it is essential to develop effective models for Virtual Machine(VM)allocation and task scheduling in fog computing environments.Effective task scheduling,VM migration,and allocation,altogether optimize the use of computational resources across different fog nodes.This process ensures that the tasks are executed with minimal energy consumption,which reduces the chances of resource bottlenecks.In this manuscript,the proposed framework comprises two phases:(i)effective task scheduling using a fractional selectivity approach and(ii)VM allocation by proposing an algorithm by the name of Fitness Sharing Chaotic Particle Swarm Optimization(FSCPSO).The proposed FSCPSO algorithm integrates the concepts of chaos theory and fitness sharing that effectively balance both global exploration and local exploitation.This balance enables the use of a wide range of solutions that leads to minimal total cost and makespan,in comparison to other traditional optimization algorithms.The FSCPSO algorithm’s performance is analyzed using six evaluation measures namely,Load Balancing Level(LBL),Average Resource Utilization(ARU),total cost,makespan,energy consumption,and response time.In relation to the conventional optimization algorithms,the FSCPSO algorithm achieves a higher LBL of 39.12%,ARU of 58.15%,a minimal total cost of 1175,and a makespan of 85.87 ms,particularly when evaluated for 50 tasks. 展开更多
关键词 Fog computing fractional selectivity approach particle swarm optimization algorithm task scheduling virtual machine allocation
下载PDF
Urban growth scenario projection using heuristic cellular automata in arid areas considering the drought impact
13
作者 TANG Xiaoyan FENG Yongjiu +7 位作者 LEI Zhenkun CHEN Shurui WANG Jiafeng WANG Rong TANG Panli WANG Mian JIN Yanmin TONG Xiaohua 《Journal of Arid Land》 SCIE CSCD 2024年第4期580-601,共22页
Arid areas with low precipitation and sparse vegetation typically yield compact urban pattern,and drought directly impacts urban site selection,growth processes,and future scenarios.Spatial simulation and projection b... Arid areas with low precipitation and sparse vegetation typically yield compact urban pattern,and drought directly impacts urban site selection,growth processes,and future scenarios.Spatial simulation and projection based on cellular automata(CA)models is important to achieve sustainable urban development in arid areas.We developed a new CA model using bat algorithm(BA)named bat algorithm-probability-of-occurrence-cellular automata(BA-POO-CA)model by considering drought constraint to accurately delineate urban growth patterns and project future scenarios of Urumqi City and its surrounding areas,located in Xinjiang Uygur Autonomous Region,China.We calibrated the BA-POO-CA model for the drought-prone study area with 2000 and 2010 data and validated the model with 2010 and 2020 data,and finally projected its urban scenarios in 2030.The results showed that BA-POO-CA model yielded overall accuracy of 97.70%and figure-of-merits(FOMs)of 35.50%in 2010,and 97.70%and 26.70%in 2020,respectively.The inclusion of drought intensity factor improved the performance of BA-POO-CA model in terms of FOMs,with increases of 5.50%in 2010 and 7.90%in 2020 than the model excluding drought intensity factor.This suggested that the urban growth of Urumqi City was affected by drought,and therefore taking drought intensity factor into account would contribute to simulation accuracy.The BA-POO-CA model including drought intensity factor was used to project two possible scenarios(i.e.,business-as-usual(BAU)scenario and ecological scenario)in 2030.In the BAU scenario,the urban growth dominated mainly in urban fringe areas,especially in the northern part of Toutunhe District,Xinshi District,and Midong District.Using exceptional and extreme drought areas as a spatial constraint,the urban growth was mainly concentrated in the"main urban areas-Changji-Hutubi"corridor urban pattern in the ecological scenario.The results of this research can help to adjust urban planning and development policies.Our model is readily applicable to simulating urban growth and future scenarios in global arid areas such as Northwest China and Africa. 展开更多
关键词 bat algorithm cellular automata(CA) probability-of-occurrence drought intensity algorithm-probability-of-occurrence-cellular automata(BA-POO-CA)model arid areas
下载PDF
Optimizing a Transportation System Using Metaheuristics Approaches (EGD/GA/ACO): A Forest Vehicle Routing Case Study
14
作者 Hossein Havaeji Thien-My Dao Tony Wong 《World Journal of Engineering and Technology》 2024年第1期141-157,共17页
The large-scale optimization problem requires some optimization techniques, and the Metaheuristics approach is highly useful for solving difficult optimization problems in practice. The purpose of the research is to o... The large-scale optimization problem requires some optimization techniques, and the Metaheuristics approach is highly useful for solving difficult optimization problems in practice. The purpose of the research is to optimize the transportation system with the help of this approach. We selected forest vehicle routing data as the case study to minimize the total cost and the distance of the forest transportation system. Matlab software helps us find the best solution for this case by applying three algorithms of Metaheuristics: Genetic Algorithm (GA), Ant Colony Optimization (ACO), and Extended Great Deluge (EGD). The results show that GA, compared to ACO and EGD, provides the best solution for the cost and the length of our case study. EGD is the second preferred approach, and ACO offers the last solution. 展开更多
关键词 Metaheuristics algorithms Transportation Costs Optimization Approach Cost Minimisation
下载PDF
Traffic flow of connected and automated vehicles at lane drop on two-lane highway: An optimization-based control algorithm versus a heuristic rules-based algorithm
15
作者 刘华清 姜锐 +1 位作者 田钧方 朱凯旋 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第1期380-391,共12页
This paper investigates traffic flow of connected and automated vehicles at lane drop on two-lane highway. We evaluate and compare performance of an optimization-based control algorithm(OCA) with that of a heuristic r... This paper investigates traffic flow of connected and automated vehicles at lane drop on two-lane highway. We evaluate and compare performance of an optimization-based control algorithm(OCA) with that of a heuristic rules-based algorithm(HRA). In the OCA, the average speed of each vehicle is maximized. In the HRA, virtual vehicle and restriction of the command acceleration caused by the virtual vehicle are introduced. It is found that(i) capacity under the HRA(denoted as C_(H)) is smaller than capacity under the OCA;(ii) the travel delay is always smaller under the OCA, but driving is always much more comfortable under the HRA;(iii) when the inflow rate is smaller than C_(H), the HRA outperforms the OCA with respect to the fuel consumption and the monetary cost;(iv) when the inflow rate is larger than C_(H), the HRA initially performs better with respect to the fuel consumption and the monetary cost, but the OCA would become better after certain time. The spatiotemporal pattern and speed profile of traffic flow are presented, which explains the reason underlying the different performance. The study is expected to help for better understanding of the two different types of algorithm. 展开更多
关键词 traffic flow connected and automated vehicles(CAVs) lane drop optimization-based control algorithm heuristic rules-based algorithm
下载PDF
Explainable Rules and Heuristics in AI Algorithm Recommendation Approaches——A Systematic Literature Review and Mapping Study
16
作者 Francisco JoséGarcía-Penlvo Andrea Vázquez-Ingelmo Alicia García-Holgado 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1023-1051,共29页
The exponential use of artificial intelligence(AI)to solve and automated complex tasks has catapulted its popularity generating some challenges that need to be addressed.While AI is a powerfulmeans to discover interes... The exponential use of artificial intelligence(AI)to solve and automated complex tasks has catapulted its popularity generating some challenges that need to be addressed.While AI is a powerfulmeans to discover interesting patterns and obtain predictive models,the use of these algorithms comes with a great responsibility,as an incomplete or unbalanced set of training data or an unproper interpretation of the models’outcomes could result in misleading conclusions that ultimately could become very dangerous.For these reasons,it is important to rely on expert knowledge when applying these methods.However,not every user can count on this specific expertise;non-AIexpert users could also benefit from applying these powerful algorithms to their domain problems,but they need basic guidelines to obtain themost out of AI models.The goal of this work is to present a systematic review of the literature to analyze studies whose outcomes are explainable rules and heuristics to select suitable AI algorithms given a set of input features.The systematic review follows the methodology proposed by Kitchenham and other authors in the field of software engineering.As a result,9 papers that tackle AI algorithmrecommendation through tangible and traceable rules and heuristics were collected.The reduced number of retrieved papers suggests a lack of reporting explicit rules and heuristics when testing the suitability and performance of AI algorithms. 展开更多
关键词 SLR systematic literature review artificial intelligence machine learning algorithm recommendation heuristicS explainability
下载PDF
SA-MSVM:Hybrid Heuristic Algorithm-based Feature Selection for Sentiment Analysis in Twitter
17
作者 C.P.Thamil Selvi R.PushpaLaksmi 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期2439-2456,共18页
One of the drastically growing and emerging research areas used in most information technology industries is Bigdata analytics.Bigdata is created from social websites like Facebook,WhatsApp,Twitter,etc.Opinions about ... One of the drastically growing and emerging research areas used in most information technology industries is Bigdata analytics.Bigdata is created from social websites like Facebook,WhatsApp,Twitter,etc.Opinions about products,persons,initiatives,political issues,research achievements,and entertainment are discussed on social websites.The unique data analytics method cannot be applied to various social websites since the data formats are different.Several approaches,techniques,and tools have been used for big data analytics,opinion mining,or sentiment analysis,but the accuracy is yet to be improved.The proposed work is motivated to do sentiment analysis on Twitter data for cloth products using Simulated Annealing incorporated with the Multiclass Support Vector Machine(SA-MSVM)approach.SA-MSVM is a hybrid heuristic approach for selecting and classifying text-based sentimental words following the Natural Language Processing(NLP)process applied on tweets extracted from the Twitter dataset.A simulated annealing algorithm searches for relevant features and selects and identifies sentimental terms that customers criticize.SA-MSVM is implemented,experimented with MATLAB,and the results are verified.The results concluded that SA-MSVM has more potential in sentiment analysis and classification than the existing Support Vector Machine(SVM)approach.SA-MSVM has obtained 96.34%accuracy in classifying the product review compared with the existing systems. 展开更多
关键词 Bigdata analytics Twitter dataset for cloth product heuristic approaches sentiment analysis feature selection classification
下载PDF
Dark Forest Algorithm:A Novel Metaheuristic Algorithm for Global Optimization Problems
18
作者 Dongyang Li Shiyu Du +1 位作者 Yiming Zhang Meiting Zhao 《Computers, Materials & Continua》 SCIE EI 2023年第5期2775-2803,共29页
Metaheuristic algorithms,as effective methods for solving optimization problems,have recently attracted considerable attention in science and engineering fields.They are popular and have broad applications owing to th... Metaheuristic algorithms,as effective methods for solving optimization problems,have recently attracted considerable attention in science and engineering fields.They are popular and have broad applications owing to their high efficiency and low complexity.These algorithms are generally based on the behaviors observed in nature,physical sciences,or humans.This study proposes a novel metaheuristic algorithm called dark forest algorithm(DFA),which can yield improved optimization results for global optimization problems.In DFA,the population is divided into four groups:highest civilization,advanced civilization,normal civilization,and low civilization.Each civilization has a unique way of iteration.To verify DFA’s capability,the performance of DFA on 35 well-known benchmark functions is compared with that of six other metaheuristic algorithms,including artificial bee colony algorithm,firefly algorithm,grey wolf optimizer,harmony search algorithm,grasshopper optimization algorithm,and whale optimization algorithm.The results show that DFA provides solutions with improved efficiency for problems with low dimensions and outperforms most other algorithms when solving high dimensional problems.DFAis applied to five engineering projects to demonstrate its applicability.The results show that the performance of DFA is competitive to that of current well-known metaheuristic algorithms.Finally,potential upgrading routes for DFA are proposed as possible future developments. 展开更多
关键词 METAheuristic algorithm global optimization
下载PDF
Availability Capacity Evaluation and Reliability Assessment of Integrated Systems Using Metaheuristic Algorithm
19
作者 A.Durgadevi N.Shanmugavadivoo 《Computer Systems Science & Engineering》 SCIE EI 2023年第3期1951-1971,共21页
Contemporarily,the development of distributed generations(DGs)technologies is fetching more,and their deployment in power systems is becom-ing broad and diverse.Consequently,several glitches are found in the recent st... Contemporarily,the development of distributed generations(DGs)technologies is fetching more,and their deployment in power systems is becom-ing broad and diverse.Consequently,several glitches are found in the recent studies due to the inappropriate/inadequate penetrations.This work aims to improve the reliable operation of the power system employing reliability indices using a metaheuristic-based algorithm before and after DGs penetration with feeder system.The assessment procedure is carried out using MATLAB software and Mod-ified Salp Swarm Algorithm(MSSA)that helps assess the Reliability indices of the proposed integrated IEEE RTS79 system for seven different configurations.This algorithm modifies two control parameters of the actual SSA algorithm and offers a perfect balance between the exploration and exploitation.Further,the effectiveness of the proposed schemes is assessed using various reliability indices.Also,the available capacity of the extended system is computed for the best configuration of the considered system.The results confirm the level of reli-able operation of the extended DGs along with the standard RTS system.Speci-fically,the overall reliability of the system displays superior performance when the tie lines 1 and 2 of the DG connected with buses 9 and 10,respectively.The reliability indices of this case namely SAIFI,SAIDI,CAIDI,ASAI,AUSI,EUE,and AEUE shows enhancement about 12.5%,4.32%,7.28%,1.09%,4.53%,12.00%,and 0.19%,respectively.Also,a probability of available capacity at the low voltage bus side is accomplished a good scale about 212.07 times/year. 展开更多
关键词 Meta-heuristic algorithm modified salp swarm algorithm reliability indices distributed generations(DGs)
下载PDF
Language Education Optimization: A New Human-Based Metaheuristic Algorithm for Solving Optimization Problems
20
作者 Pavel Trojovsky Mohammad Dehghani +1 位作者 Eva Trojovská Eva Milkova 《Computer Modeling in Engineering & Sciences》 SCIE EI 2023年第8期1527-1573,共47页
In this paper,based on the concept of the NFL theorem,that there is no unique algorithm that has the best performance for all optimization problems,a new human-based metaheuristic algorithm called Language Education O... In this paper,based on the concept of the NFL theorem,that there is no unique algorithm that has the best performance for all optimization problems,a new human-based metaheuristic algorithm called Language Education Optimization(LEO)is introduced,which is used to solve optimization problems.LEO is inspired by the foreign language education process in which a language teacher trains the students of language schools in the desired language skills and rules.LEO is mathematically modeled in three phases:(i)students selecting their teacher,(ii)students learning from each other,and(iii)individual practice,considering exploration in local search and exploitation in local search.The performance of LEO in optimization tasks has been challenged against fifty-two benchmark functions of a variety of unimodal,multimodal types and the CEC 2017 test suite.The optimization results show that LEO,with its acceptable ability in exploration,exploitation,and maintaining a balance between them,has efficient performance in optimization applications and solution presentation.LEO efficiency in optimization tasks is compared with ten well-known metaheuristic algorithms.Analyses of the simulation results show that LEO has effective performance in dealing with optimization tasks and is significantly superior andmore competitive in combating the compared algorithms.The implementation results of the proposed approach to four engineering design problems show the effectiveness of LEO in solving real-world optimization applications. 展开更多
关键词 OPTIMIZATION language education EXPLORATION EXPLOITATION metaheuristic algorithm
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部