期刊文献+
共找到104篇文章
< 1 2 6 >
每页显示 20 50 100
Comparison of Newly Synthetic Hexaploid Wheat with Its Donors on SSR Products 被引量:2
1
作者 张连全 孙根楼 +5 位作者 颜泽洪 陈其皎 袁中伟 兰秀锦 郑有良 刘登才 《Journal of Genetics and Genomics》 SCIE CAS CSCD 北大核心 2007年第10期939-946,共8页
Microsatellites or SSRs as powerful genetic markers have widely been used in genetics and evolutionary biology in common wheat. Because of the high polymorphism, newly synthesized hexaploid wheat has been used in the ... Microsatellites or SSRs as powerful genetic markers have widely been used in genetics and evolutionary biology in common wheat. Because of the high polymorphism, newly synthesized hexaploid wheat has been used in the construction of genetic segregation population for SSR markers, However, data on the evolution of microsatellites during the polyploidization event of hexaploid wheat are limited. In this study, 66 pairs of specific to A/B genome SSR patterns among newly synthesized hexaploid wheat, the donor tetraploid wheat and Aegilops tauschii were compared. The results indicated that most SSR markers were conserved during the polyploidization events of newly synthetic hexaploid wheat, from Triticum turgidum and Ae. tauschii. Over 70% A/B genome specific SSR markers could amplify the SSR sequences from the D genome ofAe. tauschii. Most amplified fragments from Ae, tauschii were detected in synthetic hexaploid at corresponding positions with the same sizes and patterns as in its parental Ae. tauschii. This suggested that these SSR markers, specific for A/B genome in common wheat, could amplify SSR products of D genome besides A/B genome in the newly synthesized hexaploid wheat, that is, these SSR primers specific for A/B genome in common wheat were nonspecific for the A/B genome in the synthetic hexaploid wheat. In addition, one amplified Ae. tauschii product was not detected in the newly synthetic hexaploid wheat. An extra-amplified product was found in the newly synthetic hexaploid wheat. These results suggested that caution should be taken when using SSR marker to genotype newly synthetic hexaploid wheat. 展开更多
关键词 synthetic hexaploid wheat SSR (microsatellite) genome specificity transferability molecular marker
下载PDF
Effect of HMW-GS 6 + 8 and 1.5 + 10 from Synthetic Hexaploid Wheat on Wheat Quality Traits 被引量:10
2
作者 TANG Yong-lu YANG Wu-yun +2 位作者 TIAN Ji-chun LI Jun CHEN Fang 《Agricultural Sciences in China》 CAS CSCD 2008年第10期1161-1171,共11页
To determine the effect of 6 + 8 and 1.5 + 10 HMW-GS of synthetic hexaploid wheat (SHW) on main quality parameters of wheat, a set of recombinant inbred lines (RILs) derived from the cross between a SHW with N,... To determine the effect of 6 + 8 and 1.5 + 10 HMW-GS of synthetic hexaploid wheat (SHW) on main quality parameters of wheat, a set of recombinant inbred lines (RILs) derived from the cross between a SHW with N, 6 + 8, 1.5 + 10 HMW-GS and a cultivar Chuanyu 12-1 (CY 12-1) with 1, 7 + 8, 2 + 12 were planted in three environments in 2005 and 2006 and totally 16 quality parameters were tested for each line. Significant differences in all tested quality parameters but flour yield were observed between the two parents. The mean values of the RILs were intermediate to the parents for grain and protein parameters and some farinograph parameters, flour water absorption (FWA), and farinograph softening (SOF) but beyond parents at dough stability time (DST), breakdown time (BRT), quality number (QN), noodle score (NS), and loaf volume (LOV). All of the quality traits, especially in grain hardness (GH), zeleny sedimentation volume (SED), and most of farinograph parameters had significant difference between the different HMW-GS components. The effects of different alleles of HMW-GS at same locus (Glu-A1 or Glu-B1 or GIu-D1) on the different quality parameters were also different and affected by the other two loci. For most of parameters tested, 6 + 8 was better than 7 + 8 and there was no difference between 1.5 + 10 and 2 + 12. End-use quality was greatly influenced by components of HMW-GS. The components of 1, 6 + 8, 1.5 + 10 had the highest LOV and bread score (BS) values, whereas the components of 1, 7+ 8 and 1.5 + 10 had the highest NS values. Noodle score performed a positive linear relationship with falling number (FN) and its relationships to other quality parameters were affected by environments. Loaf volume had a significant negative relationship to SOF and positive associations with most of quality parameters. It could be concluded that HMW-GS 6+ 8 from SHW had better overall quality characteristics than 7 + 8, whereas the effects of 1.5 + 10 on quality was different in respect to quality parameters and the HMW-GS components. Synthetic hexaploid wheat with subunits 6 + 8 and 1.5 + 10 had the potentials to improve the end-use quality of wheat cultivars. 展开更多
关键词 synthetic hexaploid wheat recombinant inbred lines 6 8 1.5 10 HMW-GS HMW-GS component quality traits
下载PDF
Identification of QTLs for Yield-Related Traits in the Recombinant Inbred Line Population Derived from the Cross Between a Synthetic Hexaploid Wheat-Derived Variety Chuanmai 42 and a Chinese Elite Variety Chuannong 16 被引量:8
3
作者 TANG Yong-lu LI Jun +4 位作者 WU Yuan-qi WEI Hui-ting LI Chao-SU YANG Wu-yun CHEN Fang 《Agricultural Sciences in China》 CAS CSCD 2011年第11期1665-1680,共16页
Synthetic hexaploid wheat (SHW) represents a valuable source of new resistances to a range of biotic and abiotic stresses. A recombinant inbred line (RIL) population with 127 recombinant inbred lines derived from ... Synthetic hexaploid wheat (SHW) represents a valuable source of new resistances to a range of biotic and abiotic stresses. A recombinant inbred line (RIL) population with 127 recombinant inbred lines derived from a SHW-derived variety Chuanmai 42 crossing with a Chinese spring wheat variety Chuannong 16 was used to map QTLs for agronomic traits including grain yield, grains per square meter, thousand-kernel weight, spikes per square meter, grain number per spike, grains weight per spike, and biomass yield. The population was genotyped using 184 simple-sequence repeat (SSR) markers and 34 sequence-related amplified polymorphism (SRAP) markers. Of 76 QTLs (LOD〉2.5) identified, 42 were found to have a positive effect from Chuanmai 42. The QTL QGy.saas-4D.2 associated with grain yield on chromosome 4D was detected in four of the six environments and the combined analysis, and the mean yield, across six environments, of individuals carrying the Chuanmai 42 allele at this locus was 8.9% higher than that of those lines carrying the Chuannong 16 allele. Seven clusters of the yield-coincident QTLs were detected on 1A, 4A, 3B, 5B, 4D, and 7D. 展开更多
关键词 yield-related traits quantitative trait loci Chuanmai 42 synthetic hexaploid wheat
下载PDF
Quantitative trait loci analysis for root traits in synthetic hexaploid wheat under drought stress conditions 被引量:4
4
作者 LIU Rui-xuan WU Fang-kun +8 位作者 YI Xin LIN Yu WANG Zhi-qiang LIU Shi-hang DENG Mei MA Jian WEI Yu-ming ZHENG You-liang LIU Ya-xi 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2020年第8期1947-1960,共14页
Synthetic hexaploid wheat(SHW),possesses numerous genes for drought that can help breeding for drought-tolerant wheat varieties.We evaluated 10 root traits at seedling stage in 111 F9 recombinant inbred lines derived ... Synthetic hexaploid wheat(SHW),possesses numerous genes for drought that can help breeding for drought-tolerant wheat varieties.We evaluated 10 root traits at seedling stage in 111 F9 recombinant inbred lines derived from a F2 population of a SHW line(SHW-L1)and a common wheat line,under normal(NC)and polyethylene glycol-simulated drought stress conditions(DC).We mapped quantitative trait loci(QTLs)for root traits using an enriched high-density genetic map containing 120370 single nucleotide polymorphisms(SNPs),733 diversity arrays technology markers(DArT)and 119 simple sequence repeats(SSRs).With four replicates per treatment,we identified 19 QTLs for root traits under NC and DC,and 12 of them could be consistently detected with three or four replicates.Two novel QTLs for root fresh weight and root diameter under NC explained 9 and 15.7%of the phenotypic variation respectively,and six novel QTLs for root fresh weight,the ratio of root water loss,total root surface area,number of root tips,and number of root forks under DC explained 8.5–14%of the phenotypic variation.Here seven of eight novel QTLs could be consistently detected with more than three replicates.Results provide essential information for fine-mapping QTLs related to drought tolerance that will facilitate breeding drought-tolerant wheat cultivars. 展开更多
关键词 synthetic hexaploid wheat quantitative trait loci drought stress root traits
下载PDF
Detection of Genetic Diversity in Synthetic Hexaploid Wheats Using Microsatellite Markers 被引量:2
5
作者 CHEN Guo-yue LI Li-hui 《Agricultural Sciences in China》 CAS CSCD 2007年第12期1403-1410,共8页
Ninety-five synthetic hexaploid wheats (2n = 6x = 42, AABBDD) were analyzed using 45 microsatellite markers to investigate the potential genetic diversity in wheat breeding programs. A total of 326 alleles were dete... Ninety-five synthetic hexaploid wheats (2n = 6x = 42, AABBDD) were analyzed using 45 microsatellite markers to investigate the potential genetic diversity in wheat breeding programs. A total of 326 alleles were detected by these microsatellite primer pairs, with an average of 6.65 alleles per locus. The polymorphic information content (PIC), Simpson index (SI), and genetic similarity (GS) coefficient showed that the D genome is of the highest genetic diversity among the A, B, and D genomes in the synthetic hexaploid wheats. The results also indicated that the synthetic hexaploid wheat is an efficient way to enrich wheat genetic backgrounds, especially to use the genetic variations of the D genome from Aegilops squarrosa for wheat improvement. The UPGMA dendogram, based on a similarity matrix by a simple matching coeff'lcient algorithm, delineated the above accessions into 5 major clusters and was in accordance with the available pedigree information. The results demonstrated the utility of microsatellite markers in detecting DNA polymorphism and estimating genetic diversity. 展开更多
关键词 synthetic hexaploid wheats SSRS genetic diversity
下载PDF
Genetic Analysis and Molecular Tagging a Novel Yellow Rust Resistance Gene Derived from Synthetic Hexaploid Wheat Germplasm M08
6
作者 CHEN Guo-yue LI Li-hui 《Agricultural Sciences in China》 CAS CSCD 2008年第3期266-271,共6页
Yellow rust of wheat (caused by Puccinia striiformis Westend. f. sp. tritici Eriks.) has been periodically epidemic and severely damaged wheat production in China. The development of resistant cultivars could be an ... Yellow rust of wheat (caused by Puccinia striiformis Westend. f. sp. tritici Eriks.) has been periodically epidemic and severely damaged wheat production in China. The development of resistant cultivars could be an effective way to reduce yield losses of wheat caused by yellow rust. Rust reaction tests and genetic analysis indicated that M08, the synthetic hexaploid wheat derived from hybridization between Triticum durum (2n = 6X = 28; genome AABB) and Aegilops tauschii (2n = 2X = 14; genome DD), showed resistance to current prevailing yellow rust races at seedling stage, which was controlled by a single dominant gene, designated as YrAm. Bulked segregant analysis was used to identify microsatellite markers linked to gene YrAm in an F2 population derived from cross M08 (resistant) × Jinan 17 (susceptible). Three microsatellite marker loci Xgwm77, Xgwm285, and Xgwml31 located on chromosome 3B were mapped to the YrAm locus. Xgwml31 was the closest marker locus and showed a linkage distance of 7.8 cM to the resistance locus. Thus, it is assumed that YrAm for resistance to yellow rust may be derived from Triticum durum and is located on the long arm of chromosome 3B. 展开更多
关键词 yellow rust resistance gene chromosomal location microsatellite marker synthetic hexaploid wheat Triticum durum
下载PDF
Variations in the quality parameters and gluten proteins in synthetic hexaploid wheats solely expressing the Glu-D1 locus
7
作者 DAI Shou-fen CHEN Hai-xia +5 位作者 LI Hao-yuan YANG Wan-jun ZHAI Zhi LIU Qian-yu LI Jian YAN Ze-hong 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2022年第7期1877-1885,共9页
This study evaluated the quality potential of seven synthetic hexaploid wheats(2 n=6 x=42, AABBDD) expressing only allelic variation at Glu-D1 of Aegilops tauschii(SHWSD). Major quality parameters related to dough str... This study evaluated the quality potential of seven synthetic hexaploid wheats(2 n=6 x=42, AABBDD) expressing only allelic variation at Glu-D1 of Aegilops tauschii(SHWSD). Major quality parameters related to dough strength, gluten proteins(including high-molecular-weight glutenin subunits(HMW-GS) and low-molecular-weight glutenin subunits(LMW-GS), gliadins), and their ratios between SHWSD and the weak gluten wheat control Chuannong 16(CN16) were measured in at least three environments(except STD7). The zeleny sedimentation value(ZSV), dough development time(DDT), dough stability time(DST), and farinograph quality number(FQN) of SHWSD were considered stable under different environments, with their respective ranges being 8.00–17.67 mL, 0.57–1.50 min, 0.73–1.80 min, and 9.50–27.00. The ZSV, DDT, DST, and FQN of SHWSD were smaller than those of CN16, suggesting that SHWSD had a weaker dough strength than CN16. Although SHWSD had a lower gluten index than CN16, its wet and dry gluten contents were similar to or even higher than those of CN16 in all environments tested. The protein content of grains(12.81–18.21%) and flours(14.20–20.31%) in SHWSD was higher than that in CN16. The amount of HMW-GS in SHWSD sharply decreased under the expression of fewer HMW-GS genes, and the LMW-GS, gliadins, and total glutenins were simultaneously increased in SHWSD in comparison with CN16. Moreover, SHWSD had higher ratios of LMWGS/glutenin and gliadin/glutenin but a lower ratio of HMW-GS/glutenin than CN16. These results provide necessary information for the utilization of SHWSD in weak-gluten wheat breeding. 展开更多
关键词 synthetic hexaploid wheats(SHWs) Ae.tauschii Glu-D1 weak-gluten wheat quality
下载PDF
Application of Synthetic Hexaploid Wheat Derived from T.Durum, Ae.taushii in Common Wheat Breeding for FHB Resistance
8
作者 ZHANGJu-mei SUNLian-fa 《Journal of Northeast Agricultural University(English Edition)》 CAS 2002年第2期101-105,共5页
The F 1 and F 4 plants of 'synthetic hexaploid wheat/common wheat'crosses and part of their parents were inoculated with Fusarium graminearum to evaluate FHB resistance.The results showed tht the scab resist... The F 1 and F 4 plants of 'synthetic hexaploid wheat/common wheat'crosses and part of their parents were inoculated with Fusarium graminearum to evaluate FHB resistance.The results showed tht the scab resistance in the F 1 varied with the synthetic wheat accessions used as crossing parents.In the F 4,some resistant head lines were generated from the crosses,although their parents had different scab resistance levels.It indicated that synthetic hexaploid wheat are useful in wheat breeding for scab resistance. 展开更多
关键词 common wheat breeding synthetic hexaploid wheat FHB
下载PDF
Cloning and Diversity Analysis of TaHKT2;2 in Hexaploid Wheat
9
作者 Mengjun LI Yaqing LI +2 位作者 Shichang ZHANG Nan ZHANG Zhanliang SHI 《Agricultural Biotechnology》 CAS 2018年第4期16-20,54,共6页
In order to study the roles of members of HKT gene fanfily in wheat, TaHKT2 ; 2 was isolated by using homologous cloning strategy and screening genomic BAC library. TaHKT2; 2 genes were mapped on chromosomes 7A, 7B an... In order to study the roles of members of HKT gene fanfily in wheat, TaHKT2 ; 2 was isolated by using homologous cloning strategy and screening genomic BAC library. TaHKT2; 2 genes were mapped on chromosomes 7A, 7B and 7D, named as TaHKT2; 2-7A, TaHKT2; 2-7B, and TaHKT2; 2-7D, respectively. TaHKT2 ; 2 and TaHKT2 ; 1 had the same genetic structure, composed of three exons and two introns, and formed a cluster with TaHKT2 ; 1 on the phylogenetic tree of plant HKT transporters. The coding sequences of TaHKT2 ; 2-7A, TaHKT2 ; 2-7B, and TaHKT2 ; 2-7D were 1 602, 1 602 and 1 596 bp long, respectively, but TaHKT2 ;2-7D cDNA sequence was not isolated by RT-PCR in eight wheat varieties. The natural diversity of TaHKT2 ;2 genes was analyzed by cloning and sequencing from 12 wheat varieties. The results showed that TaHKT2;2-7A was found to be more diverse than TaHKT2; 2-7B and TaHKT2; 2-7D. Only a few bases changed in the alleles of TaHKT2 ; 2 genes in wheat. No amino-acid natural variation lay in the P-loops of deduced protein sequences of all alleles of TaHKT2 ; 2 in 12 wheat varieties. The identity of coding sequences was nmch higher than that of 5' flanking regions of TaHKT2 ; 2 genes. TaHKT2 ; 2 nfight be selected over the comse of wheat domestication and belonged to domestication gene. 展开更多
关键词 hexaploid wheat HKT gene family TaHKT2 2 BAC library DIVERSITY
下载PDF
Chromosome Based Strategies to Decipher the Structure and Evolution of the Hexaploid Wheat Genome: Chromosome 3B,a Case Study
10
作者 E. Paux P. Sourdille +4 位作者 J. Salse P. Leroy J. Dolezel M. Bernard C. Feuillet 《分子植物育种》 CAS CSCD 2007年第2期167-168,共2页
With 17% of all crop area, wheat is the staple food for 40% of the world’s population. Improvement in bread wheat quality and yield in the context of sustainable agriculture is needed in the next decades to meet human
关键词 六倍体 小麦 基因 染色体
下载PDF
Synthetic hexaploid wheat and its utilization for wheat genetic improvement in China 被引量:25
11
作者 Wuyun Yang Dengcai Liu +6 位作者 Jun Li Lianquan Zhang Huiting Wei Xiaorong Hu Youliang Zheng Zhouhu He Yuchun Zou 《Journal of Genetics and Genomics》 SCIE CAS CSCD 2009年第9期539-546,共8页
Synthetic hexaploid wheat (Triticum turgidum x Aegilops tauschii) was created to explore for novel genes from T. turgidum and Ae. tauschii that can be used for common wheat improvement. In the present paper, researc... Synthetic hexaploid wheat (Triticum turgidum x Aegilops tauschii) was created to explore for novel genes from T. turgidum and Ae. tauschii that can be used for common wheat improvement. In the present paper, research advances on the utilization of synthetic hexaploid wheat for wheat genetic improvement in China are reviewed. Over 200 synthetic hexaploid wheat (SHW) accessions from the International Maize and Wheat Improvement Centre (CIMMYT) were introduced into China since 1995. Four cultivars derived from these, Chuanmai 38, Chuanmai 42, Chuanmai 43 and Chuanmai 47, have been released in China. Of these, Chuanmai 42, with large kernels and resistance to stripe rust, had the highest average yield (〉 6 t/ha) among all cultivars over two years in Sichuan provincial yield trials, outyielding the commercial check cultivar Chuanmai 107 by 22,7%. Meanwhile, by either artificial chromosome doubling via colchicine treatment or spontaneous chromosome doubling via a union of unreduced gametes (2n) from T. turgidum-Ae, tauschii hybrids, new SHW lines were produced in China. Mitotic-like meiosis might be the cytological mechanism of spontaneous chromosome doubling. SHW lines with genes for spontaneous chromosome doubling may be useful for producing new SHW-alien amphidiploids and double haploid in wheat genetic improvement. 展开更多
关键词 Aegilops tauschii synthetic hexaploid wheat disease resistance genetic diversity wheat breeding unreduced gametes
原文传递
Rapid changes of microsatellite flanking sequence in the allopolyploidization of new synthesized hexaploid wheat 被引量:26
12
作者 ZHANG Lianquan LIU Dengcai +3 位作者 YAN Zehong LAN Xiujin ZHENG Youliang ZHOU Yonghong 《Science China(Life Sciences)》 SCIE CAS 2004年第6期553-561,共9页
It was suggested that the rapid changes of DNA sequence and gene expression oc- curred at the early stages of allopolyploid formation. In this study, we revealed the microsatellite (SSR) differences between newly form... It was suggested that the rapid changes of DNA sequence and gene expression oc- curred at the early stages of allopolyploid formation. In this study, we revealed the microsatellite (SSR) differences between newly formed allopolyploids and their donor parents by using 21 primer sets specific for D genome of wheat. It was indicated that rapid changes had occurred in the “shock” process of the allopolyploid formation between tetraploid wheat and Aegilops tauschii. The changes of SSR flanking sequence resulted in appearance of novel bands or disappearance of parental bands. The disappearance of the parental bands showed much higher frequencies in comparison with that of appearance of novel bands. Disappearance of the parental bands was not random. The frequency of disappearance in tetraploid wheat was much higher than in Ae. tauschii, i. e. the disappearance frequency in AABB genome was much higher than in D genome. Changes of SSR flanking sequence occurred at the early stage of F1 hybrid or just after chro- mosome doubling. From the above results, it can be inferred that SSR flanking sequence region was very active and was amenable to change in the process of polyploidization. This suggested that SSR flanking sequence probably had special biological function at the early stage of ploy- ploidization. The rapid and directional changes at the early stage of polyploidization might con- tribute to the rapid evolution of the newly formed allopolyploid and allow the divergent genomes to act in harmony. 展开更多
关键词 synthesized hexaploid wheat genome evolution MICROSATELLITE ALLOPOLYPLOIDIZATION SSR.
原文传递
Water and Nutrient Use Efficiency in Diploid, Tetraploid and Hexaploid Wheats 被引量:9
13
作者 Ming-Li Huang Xi-Ping Deng +4 位作者 Yu-Zong Zhao Sheng-Lu Zhou Shinobu Inanaga Satoshi Yamada Kiyoshi Tanaka 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2007年第5期706-715,共10页
Three diploid (Triticum boeoticum, AA; Aegilops speltoides, BB and Ae. tauschii, DD), two tetraplold (T. dlcoccoides, AABB and T. dicoccon, AABB) and one hexapioid (T. vulgare, AABBDD) varieties of wheat, which ... Three diploid (Triticum boeoticum, AA; Aegilops speltoides, BB and Ae. tauschii, DD), two tetraplold (T. dlcoccoides, AABB and T. dicoccon, AABB) and one hexapioid (T. vulgare, AABBDD) varieties of wheat, which are very important In the evolution of wheat were chosen in this study. A pot experiment was carried out on the wheat under different water and nutrient conditions (i) to understand the differences in biomass, yield, water use efficiency (WUE), and nutrient (N, P and K) use efficiency (uptake and utilization efficiency) among ploidies in the evolution of wheat; (li) to clarify the effect of water and nutrient conditions on water and nutrient use efficiency; and (ill) to assess the relationship of water and nutrient use efficiency in the evolution of wheat. Our results showed that from diploid to tetraplold then to hexaploid during the evolution of wheat, both root biomass and above-ground biomass Increased Initially and then decreased. Water consumption for transpiration decreased remarkably, correlating with the decline of the growth period, while grain yield, harvest index, WUE, N, P and K uptake efficiency, and N, P and K utilization efficiency Increased significantly. Grain yield, harvest index and WUE decreased In the same order: T. vulgare 〉 T. dicoccon 〉 T. dicoccoides 〉 Ae. tauschii 〉 Ae. speltoides 〉 T. boeoticum. Water stress significantly decreased root blomass, above-ground biomass, yield, and water consumption for transpiration by 47-52%, but remarkably Increased WUE. Increasing the nutrient supply increased wheat above-ground biomass, grain yield, harvest Index, water consumption for transpiration and WUE under different water levels, but reduced root blomass under drought conditions. Generally, water stress and low nutrient supply resulted in the lower nutrient uptake efficiency of wheat. However, water and nutrient application had no significant effects on nutrient utilization efficiency, suggesting that wheat nutrient utilization efficiency is mainly controlled by genotypes. Compared to the other two diploid wheats, Ae. squarrosa (DD) had significant higher WUE and nutrient utilization efficiency, Indicating that the D genome may carry genes controlling high efficient utilization of water and nutrient. Significant relation- ships were found between WUE and N, P and K utilization efficiency. 展开更多
关键词 DIPLOID evolution hexaploid nutrient uptake efficiency nutrient utilization efficiency TETRAPLOID water use efficiency wheat.
原文传递
六倍体小黑麦×六倍体小麦杂交后代中染色体遗传与结构变异鉴定 被引量:1
14
作者 杨漫宇 姚方杰 +1 位作者 杨足君 杨恩年 《遗传》 CAS CSCD 北大核心 2024年第1期63-77,共15页
六倍体小黑麦是普通小麦品种遗传改良的重要基因资源,可以拓宽小麦的遗传基础。本研究以六倍体小黑麦为供体向普通小麦转移黑麦染色质,以探明六倍体小黑麦×六倍体小麦杂交、回交后代的染色体遗传特性,为小黑麦种质材料的后续研究... 六倍体小黑麦是普通小麦品种遗传改良的重要基因资源,可以拓宽小麦的遗传基础。本研究以六倍体小黑麦为供体向普通小麦转移黑麦染色质,以探明六倍体小黑麦×六倍体小麦杂交、回交后代的染色体遗传特性,为小黑麦种质材料的后续研究和利用奠定基础。以六倍体小黑麦16引171为母本,六倍体小麦川麦62为父本配制杂交及回交组合,利用非变性荧光原位杂交技术(non-denaturing florescence in situ hybridization,ND-FISH)对F1、BC1F1和BC1F2植株进行细胞学跟踪鉴定。结果表明,杂种F1回交结实率为2.61%;BC1F1植株2R染色体传递频率最高;BC1F2植株中黑麦染色体在后代的传递率为6R>4R>2R,小麦背景中5B-7B相互易位染色体在BC1F2植株中表现出严重偏分离。在BC1F1和BC1F2植株中观察到24种结构变异染色体,包括染色体片段、等臂易位染色体、易位染色体以及双着丝粒染色体,且部分BC1F2植株的种子表现粒长和千粒重均优于六倍体小麦亲本川麦62。因此,在利用六倍体小黑麦作为桥梁向普通小麦导入黑麦遗传物质时,应尽量采取多次回交的方式,使D组染色体迅速恢复,保证后代育性的恢复,同时关注染色体结构变异材料的潜在应用价值。 展开更多
关键词 六倍体小黑麦 六倍体小麦 染色体遗传 ND-FISH 染色体结构变异
下载PDF
利用人工合成小麦基因资源实现产量突破的育种实践
15
作者 杨武云 《四川农业大学学报》 CSCD 北大核心 2024年第2期255-263,共9页
【目的】人工合成小麦是科学家模拟小麦进化过程,利用四倍体小麦与二倍体节节麦杂交、染色体加倍而成的新型六倍体小麦资源,集合了双亲的优良性状,可作为桥梁改良现代小麦。【方法】回顾了四川小麦80多年的育种历程,对利用人工合成小麦... 【目的】人工合成小麦是科学家模拟小麦进化过程,利用四倍体小麦与二倍体节节麦杂交、染色体加倍而成的新型六倍体小麦资源,集合了双亲的优良性状,可作为桥梁改良现代小麦。【方法】回顾了四川小麦80多年的育种历程,对利用人工合成小麦基因资源实现产量水平突破的方法技术进行了分析,希望为进一步利用小麦近缘属种育种应用提供参考。【结果】利用大群体有限回交法和重组自交系育种法改良初级人工合成小麦及其衍生系,育成了产量提升近30%的小麦品种川麦42及衍生品种川麦104,维持四川小麦产量台阶20余年。【结论】种质资源发掘、育种方法技术创新,是实现产量新突破有效途径。 展开更多
关键词 人工合成小麦 产量 小麦近缘属种
下载PDF
人工合成小麦和地方品种穗发芽抗性育种利用效率 被引量:1
16
作者 刘泽厚 王琴 +5 位作者 叶美金 万洪深 杨宁 杨漫宇 杨武云 李俊 《中国农业科学》 CAS CSCD 北大核心 2024年第7期1255-1266,共12页
【目的】小麦穗发芽是影响小麦产量和品质的重要限制因子。具有抗穗发芽特性的人工合成小麦和地方品种是改良栽培小麦穗发芽抗性的重要基因资源,通过分子标记辅助选择转育人工合成小麦和地方品种穗发芽抗性位点,评价人工合成小麦和地方... 【目的】小麦穗发芽是影响小麦产量和品质的重要限制因子。具有抗穗发芽特性的人工合成小麦和地方品种是改良栽培小麦穗发芽抗性的重要基因资源,通过分子标记辅助选择转育人工合成小麦和地方品种穗发芽抗性位点,评价人工合成小麦和地方品种导入系抗穗发芽育种利用效率,筛选抗穗发芽小麦新材料,为小麦穗发芽抗性育种提供数据和材料支撑。【方法】以抗穗发芽的人工合成小麦SYN792和四川地方品种涪陵须须麦为母本,以穗发芽敏感品种川麦45为轮回亲本,构建2个BC1F7群体。2017年,通过整穗发芽鉴定法对2个BC1F7群体的1796个株系进行穗发芽表型初筛,然后利用与人工合成小麦PHS-3D和地方品种PHS-A1穗发芽抗性位点连锁的SSR标记进行分子标记选择,筛选出整穗发芽率(SGR)小于35%且携带PHS-3D和PHS-A1抗性位点的导入系;2018和2019年,连续2年对初筛选出的PHS-3D和PHS-A1导入系进行整穗发芽率、籽粒发芽指数(GI)和产量相关性状鉴定,其中,籽粒发芽鉴定试验设置25℃(18GI)和32℃(19GI)2个发芽温度。通过不同环境下穗发芽抗性和产量数据,分析人工合成小麦和地方品种导入系抗穗发芽育种利用效率,筛选抗穗发芽且综合性状好的优异导入系。【结果】经整穗发芽鉴定初筛,从1796个衍生系中筛选出SGR值小于35%的株系537个;进一步对筛选出的537个株系进行分子标记检测,发现332个株系导入了人工合成小麦PHS-3D和地方品种PHS-A1穗发芽抗性位点,包括人工合成小麦导入系73个、地方品种导入系259个;地方品种PHS-A1导入系的频率显著高于人工合成小麦PHS-3D导入系。2018和2019年通过对332个穗发芽抗性位点导入系穗发芽鉴定发现,不同年份穗发芽指标间均呈极显著正相关,穗发芽指标SGR和GI表现出相对稳定的趋势;人工合成小麦和地方品种导入系的3个穗发芽指标平均值(18GI、18SGR和19SGR)均低于23%,差异不显著。不同发芽温度导入系的GI值差异较大,发芽温度32℃时,人工合成小麦PHS-3D导入系的GI值显著低于地方品种PHS-A1导入系。筛选出的73个人工合成小麦导入系中,红粒系穗发芽指标值均低于白粒系;其中,11个人工合成小麦白粒导入系表现中抗及以上抗性水平,14个红粒导入系在不同发芽温度时GI值均低于35%。2年产量相关性状分析表明,人工合成小麦PHS-3D导入系的千粒重显著高于地方品种PHS-A1导入系,而穗粒数显著小于地方品种PHS-A1导入系。根据产量性状和穗发芽抗性表现,筛选出23个穗发芽抗性和综合性状均较好的优异导入系,包括7个人工合成小麦PHS-3D导入系、16个地方品种PHS-A1导入系;人工合成小麦优异导入系中有2个白粒导入系穗发芽抗性中抗以上,2个红粒导入系不同发芽温度的GI值均低于25%,表现出稳定的穗发芽抗性。【结论】人工合成小麦和地方品种均可用于改良现代栽培小麦穗发芽抗性,利用地方品种进行穗发芽抗性育种改良效率优于人工合成小麦;但人工合成小麦导入系的穗发芽抗性的稳定性优于地方品种导入系。筛选出的23个人工合成小麦和地方品种导入系是小麦穗发芽抗性和产量性状改良的重要基因资源;特别是人工合成小麦白粒导入系(编号5201)和红粒导入系(编号5497和5505)是非常有育种利用价值的穗发芽抗性育种亲本材料。 展开更多
关键词 小麦 人工合成小麦 地方品种 穗发芽 产量相关性状
下载PDF
Quantitative Trait Loci Associated with Micronutrient Concentrations in Two Recombinant Inbred Wheat Lines 被引量:6
17
作者 PU Zhi-en YU Ma +8 位作者 HE Qiu-yi CHEN Guo-yue WANG Ji-rui LIU Ya-xi JIANG Qian-tao LI Wei DAI Shou-fen WEI Yu-ming ZHENG You-liang 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2014年第11期2322-2329,共8页
Micronutrient malnutrition affects over three billion people worldwide, especially women and children in developing countries. Increasing the bioavailable concentrations of essential elements in the edible portions of... Micronutrient malnutrition affects over three billion people worldwide, especially women and children in developing countries. Increasing the bioavailable concentrations of essential elements in the edible portions of crops is an effective resolution to address this issue. To determine the genetic factors controlling micronutrient concentration in wheat, the quantitative trait locus (QTL) analysis for iron, zinc, copper, manganese, and selenium concentrations in two recombinant inbred line populations was performed. In all, 39 QTLs for ifve micronutrient concentrations were identiifed in this study. Of these, 22 alleles from synthetic wheat SHW-L1 and seven alleles from the progeny line of the synthetic wheat Chuanmai 42 showed an increase in micronutrient concentrations. Five QTLs on chromosomes 2A, 3D, 4D, and 5B found in both the populations showed signiifcant phenotypic variation for 2-3 micronutrient concentrations. Our results might help understand the genetic control of micronutrient concentration and allow the utilization of genetic resources of synthetic hexaploid wheat for improving micronutrient efifciency of cultivated wheat by using molecular marker-assisted selection. 展开更多
关键词 micronutrient concentration synthetic hexaploid wheat QTL
下载PDF
Breaking wheat yield barriers requires integrated efforts in developing countries 被引量:2
18
作者 Saeed Rauf Maria Zaharieva +5 位作者 Marilyn L Warburton ZHANG Ping-zhi Abdullah M AL-Sadi Farghama Khalil Marcin Kozak Sultan A Tariq 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2015年第8期1447-1474,共28页
Most yield progress obtained through the so called "Green Revolution", particularly in the irrigated areas of Asia, has reached a limit, and major resistance genes are quickly overcome by the appearance of new strai... Most yield progress obtained through the so called "Green Revolution", particularly in the irrigated areas of Asia, has reached a limit, and major resistance genes are quickly overcome by the appearance of new strains of disease causing organisms.New plant stresses due to a changing environment are difficult to breed for as quickly as the changes occur.There is consequently a continual need for new research programs and breeding strategies aimed at improving yield potential, abiotic stress tolerance and resistance to new, major pests and diseases.Recent advances in plant breeding encompass novel methods of expanding genetic variability and selecting for recombinants, including the development of synthetic hexaploid, hybrid and transgenic wheats.In addition, the use of molecular approaches such as quantitative trait locus(QTL) and association mapping may increase the possibility of directly selecting positive chromosomal regions linked with natural variation for grain yield and stress resistance.The present article reviews the potential contribution of these new approaches and tools to the improvement of wheat yield in farmer's fields, with a special emphasis on the Asian countries, which are major wheat producers, and contain the highest concentration of resource-poor wheat farmers. 展开更多
关键词 genetic diversity HETEROSIS hybrid wheat synthetic hexaploid wheat yield potential
下载PDF
Integrating the physical and genetic map of bread wheat facilitates the detection of chromosomal rearrangements 被引量:1
19
作者 ZHAO Lai-bin XIE Die +10 位作者 HUANG Lei ZHANG Shu-jie LUO Jiang-tao JIANG Bo NING Shun-zong ZHANG Lian-quan YUAN Zhong-wei WANG Ji-rui ZHENG You-liang LIU Deng-cai HAO Ming 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2021年第9期2333-2342,共10页
The bread wheat genome harbors a high content of repetitive DNA,which is amenable to detection and characterization using fluorescence in situ hybridization(FISH)karyotyping.An integrated genetic map was derived from ... The bread wheat genome harbors a high content of repetitive DNA,which is amenable to detection and characterization using fluorescence in situ hybridization(FISH)karyotyping.An integrated genetic map was derived from a recombinant inbred population bred from a cross between a synthetic hexaploid wheat and a commercial Chinese bread wheat cultivar,based on 28 variable FISH sites and>150000 single nucleotide polymorphism(SNP)loci.The majority(20/28)of the variable FISH sites were physically located within a chromosomal region consistent with the genetic location inferred from that of their co-segregating SNP loci.The eight exceptions reflected the presence of either a translocation(1 R/1 B,1 A/7 A)or a presumptive intra-chromosomal inversion(4 A).For eight out of the nine FISH sites detected on the Chinese Spring(CS)karyotype,there was a good match with the reference genome sequence,indicating that the most recent assembly has dealt well with the problem of placing tandem repeats.The integrated genetic map produced for wheat is informative as to the location of blocks of tandemly repeated DNA and can aid in improving the quality of the genome sequence assembly in regions surrounding these blocks. 展开更多
关键词 TRITICEAE Triticum turgidum repetitive DNA sequences fluorescence in situ hybridization(FISH) wheat genome synthetic hexaploid wheat
下载PDF
Wheat breeding in the hometown of Chinese Spring 被引量:4
20
作者 Dengcai Liu Lianquan Zhang +8 位作者 Ming Hao Shunzong Ning Zhongwei Yuan Shoufen Dai Lin Huang Bihua Wu Zehong Yan Xiujin Lan Youliang Zheng 《The Crop Journal》 SCIE CAS CSCD 2018年第1期82-90,共9页
The common wheat landrace Chinese Spring(CS) was made famous by the work of Ernie Sears, a great cytogenetist, who developed a number of CS-based aneuploid series that were used to identify individual wheat chromosome... The common wheat landrace Chinese Spring(CS) was made famous by the work of Ernie Sears, a great cytogenetist, who developed a number of CS-based aneuploid series that were used to identify individual wheat chromosomes. Based on this, a standard karyotype and nomenclature system was developed for wheat chromosomes that allowed wheat researchers to analyze and manipulate the wheat genome with unprecedented precision and efficiency. Nevertheless, not much is known about the utilization of CS at its hometown, Chengdu in Sichuan province, during early wheat breeding activity. In this review, we follow the speculation that CS is a selection from the Cheng-du-guang-tou(CDGT) landrace. We provide a description of how CDGT became a founder landrace for wheat breeding activities in early times. We show that CDGT-derived varieties were reinforced genetically by crosses to six more exotic parents. These varieties remained the major elite cultivar for several decades. Later, synthetic hexaploid wheats were introduced into the breeding program, firstly using those from CIMMYT and later using materials produced with local tetraploid wheat and goat grass. Finally, we discuss the strategies and future directions to improve wheat yield and resistance through an expanded genetic basis,especially by recapturing lost genetic variations from landraces and related wild species, a process that may set an example for wheat breeders in China and elsewhere. 展开更多
关键词 INTROGRESSION Multiparent advanced generation inter-cross SYNTHETIC hexaploid wheat Unreduced GAMETES
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部