[Objective] The aim of the study was to make research on adsorption of Chinese walnut(Juglans mandshurica Maxim.) Shell(CWS) to Hg(Ⅱ) in water.[Method] Shells of Juglans mandshurica Maxim were used as biosorpti...[Objective] The aim of the study was to make research on adsorption of Chinese walnut(Juglans mandshurica Maxim.) Shell(CWS) to Hg(Ⅱ) in water.[Method] Shells of Juglans mandshurica Maxim were used as biosorption to remove Hg(Ⅱ) in water solution to explore the influence to adsorption of Hg(Ⅱ) under different conditions,like pH solution,adsorption time,and Hg(Ⅱ).[Result] The experimental results show that when absorptivity of Hg(Ⅱ) by CWS reached the highest,pH ranged within 5.0-6.0.The adsorptivity decreased as initial Hg(Ⅱ) concentrations increased.Fourier Transform Infrared Spectroscopy(FTIR) spectrum revealed some chemical groups of CWS may affect the adsorption of Hg(Ⅱ),such as hydroxyl groups,methyl groups,aromatic methoxyl groups,unconjugated carbonyl,and typical aromatic ring,etc.Adsorption equation can be concluded considering the biosorption process relationship with Langmuir and Frendrich isotherm.[Conclusion] The study found that CW could be employed as a promising biosorption to remove Hg(Ⅱ) from aqueous environments.展开更多
The hazard of Hg ion pollution triggers the motivation to explore a fast, sensitive, and reliable detection method. Here, we design and fabricate novel 36-nm-thick Ag-Au composite layers alternately deposited on three...The hazard of Hg ion pollution triggers the motivation to explore a fast, sensitive, and reliable detection method. Here, we design and fabricate novel 36-nm-thick Ag-Au composite layers alternately deposited on three-dimensional (3D) periodic SiO2 nanogrids as surface-enhanced Raman scattering (SERS) probes. The SERS effects of the probes depend mainly on the positions and intensities of their localized surface plasmon resonance (LSPR) peaks, which is confirmed by the absorption spectra from finite-difference time-domain (FDTD) calculations. By optimizing the structure and material to maximize the intrinsic electric field enhancement based on the design method of 3D periodic SERS probes proposed, high performance of the Ag-Au/SiO2 nanogrid probes is achieved with the stability further enhanced by annealing. The optimized probes show the outstanding stability with only 4.0% SERS intensity change during 10-day storage, the excellent detection uniformity of 5.78% (RSD), the detection limit of 5.0 × 10-12 M (1 ppt), and superior selectivity for Hg ions. The present study renders it possible to realize the rapid and reliable detection of trace heavy metal ions by developing high- performance 3D periodic structure SERS probes by designing novel 3D structure and optimizing plasmonic material.展开更多
In the methanolic solution, the selectivity of rhodamine hydrazide (RhH) was simply switched from Cu2+ to Hg2+ ions. For the optimal absorption of RhH onto a solid-phase membrane, pure methanol was used to dissolv...In the methanolic solution, the selectivity of rhodamine hydrazide (RhH) was simply switched from Cu2+ to Hg2+ ions. For the optimal absorption of RhH onto a solid-phase membrane, pure methanol was used to dissolve RhH prior to the impregnation. Of solid-phase membranes tested, the filter paper was chosen due to its cost-effectiveness and good detection limit of Hg2+ ion. The detection limit of the RhH impregnated filter paper for the detection of Hg2+ ion was determined to be under 2 ppm both fluorescent and colorimetric detection.展开更多
基金Supported by National Water Major Project of China (2008ZX07211-007)~~
文摘[Objective] The aim of the study was to make research on adsorption of Chinese walnut(Juglans mandshurica Maxim.) Shell(CWS) to Hg(Ⅱ) in water.[Method] Shells of Juglans mandshurica Maxim were used as biosorption to remove Hg(Ⅱ) in water solution to explore the influence to adsorption of Hg(Ⅱ) under different conditions,like pH solution,adsorption time,and Hg(Ⅱ).[Result] The experimental results show that when absorptivity of Hg(Ⅱ) by CWS reached the highest,pH ranged within 5.0-6.0.The adsorptivity decreased as initial Hg(Ⅱ) concentrations increased.Fourier Transform Infrared Spectroscopy(FTIR) spectrum revealed some chemical groups of CWS may affect the adsorption of Hg(Ⅱ),such as hydroxyl groups,methyl groups,aromatic methoxyl groups,unconjugated carbonyl,and typical aromatic ring,etc.Adsorption equation can be concluded considering the biosorption process relationship with Langmuir and Frendrich isotherm.[Conclusion] The study found that CW could be employed as a promising biosorption to remove Hg(Ⅱ) from aqueous environments.
基金Project supported by the National Key Research and Development Program of China(Grant No.2017YFA0207104)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA09040101)+2 种基金the National Natural Science Foundation of China(Grant No.Y6061111JJ)the Youth Innovation Promotion Association of Chinese Academy of Sciences(Grant No.2015030)the Key Technology Talent Program of Chinese Academy of Sciences(Grant Nos.Y8482911ZX and Y7602921ZX)
文摘The hazard of Hg ion pollution triggers the motivation to explore a fast, sensitive, and reliable detection method. Here, we design and fabricate novel 36-nm-thick Ag-Au composite layers alternately deposited on three-dimensional (3D) periodic SiO2 nanogrids as surface-enhanced Raman scattering (SERS) probes. The SERS effects of the probes depend mainly on the positions and intensities of their localized surface plasmon resonance (LSPR) peaks, which is confirmed by the absorption spectra from finite-difference time-domain (FDTD) calculations. By optimizing the structure and material to maximize the intrinsic electric field enhancement based on the design method of 3D periodic SERS probes proposed, high performance of the Ag-Au/SiO2 nanogrid probes is achieved with the stability further enhanced by annealing. The optimized probes show the outstanding stability with only 4.0% SERS intensity change during 10-day storage, the excellent detection uniformity of 5.78% (RSD), the detection limit of 5.0 × 10-12 M (1 ppt), and superior selectivity for Hg ions. The present study renders it possible to realize the rapid and reliable detection of trace heavy metal ions by developing high- performance 3D periodic structure SERS probes by designing novel 3D structure and optimizing plasmonic material.
文摘In the methanolic solution, the selectivity of rhodamine hydrazide (RhH) was simply switched from Cu2+ to Hg2+ ions. For the optimal absorption of RhH onto a solid-phase membrane, pure methanol was used to dissolve RhH prior to the impregnation. Of solid-phase membranes tested, the filter paper was chosen due to its cost-effectiveness and good detection limit of Hg2+ ion. The detection limit of the RhH impregnated filter paper for the detection of Hg2+ ion was determined to be under 2 ppm both fluorescent and colorimetric detection.