Traditional photo-electcatalyst structures of small noble metal nanoparticles assembling into large-scale photoactive semiconductors still suffer from agglomeration of noble metal nanoparticles,insufficient charge tra...Traditional photo-electcatalyst structures of small noble metal nanoparticles assembling into large-scale photoactive semiconductors still suffer from agglomeration of noble metal nanoparticles,insufficient charge transfer,undesirable photoresponse ability that restricted the photo-electrocatalytic performance.To this end,a novel design strategy is proposed in this work,namely integrating small-scale photoactive materials(doped graphene quantum dots,S,N-GQDs)with large-sized noble metal(Pd P)nanoflowers to form novel photo-electrocatalysts for high-efficient alcohol oxidation reaction.As expected,superior electrocatalytic performance of Pd P/S,N-GQDs for ethylene glycol oxidation is acquired,thanks to the nanoflower structure with larger specific surface area and abundant active sites.Furthermore,nonmetal P are demonstrated,especially optimizing the adsorption strength,enhancing the interfacial contact,reducing metal agglomeration,ensuring uniform and efficient doping of S,N-GQDs,and ultimately significantly boost the catalytic activity of photo-electrocatalysts.展开更多
基金supported by Zhejiang Provincial Natural Science Foundation of China(No.LTGS23B030002)the National Natural Science Foundation of China(Nos.21978111 and 22278175)。
文摘Traditional photo-electcatalyst structures of small noble metal nanoparticles assembling into large-scale photoactive semiconductors still suffer from agglomeration of noble metal nanoparticles,insufficient charge transfer,undesirable photoresponse ability that restricted the photo-electrocatalytic performance.To this end,a novel design strategy is proposed in this work,namely integrating small-scale photoactive materials(doped graphene quantum dots,S,N-GQDs)with large-sized noble metal(Pd P)nanoflowers to form novel photo-electrocatalysts for high-efficient alcohol oxidation reaction.As expected,superior electrocatalytic performance of Pd P/S,N-GQDs for ethylene glycol oxidation is acquired,thanks to the nanoflower structure with larger specific surface area and abundant active sites.Furthermore,nonmetal P are demonstrated,especially optimizing the adsorption strength,enhancing the interfacial contact,reducing metal agglomeration,ensuring uniform and efficient doping of S,N-GQDs,and ultimately significantly boost the catalytic activity of photo-electrocatalysts.