期刊文献+
共找到370篇文章
< 1 2 19 >
每页显示 20 50 100
基于CNN-LSTM电力消耗预测模型及系统开发
1
作者 龚立雄 钞寅康 +1 位作者 黄霄 陈佳霖 《计算机仿真》 2024年第8期77-83,共7页
有效预测电能负荷,对提高电力负荷时间序列测量准确度及合理制定用电能管理措施具有重要意义。针对传统预测模型在电能负荷预测中无法充分挖掘时间序列数据中隐藏特征的问题,基于电能数据时间序列的趋势,融合数值信息提出一种卷积神经网... 有效预测电能负荷,对提高电力负荷时间序列测量准确度及合理制定用电能管理措施具有重要意义。针对传统预测模型在电能负荷预测中无法充分挖掘时间序列数据中隐藏特征的问题,基于电能数据时间序列的趋势,融合数值信息提出一种卷积神经网络(convolutional neuralnetwork,CNN)与长期短期记忆循环神经网络(long short-term memory network,LSTM)相结合的混合多隐层CNN-LSTM电力能耗预测模型。首先,通过设定最小目标函数作为优化目标,Adam优化算法更新神经网络的权重,并对网络层和批大小进行自适应调优以确定最佳层数和批大小。其次,构建混合多隐层模型并进行隐层组合优化与讨论,确定最佳时间维度的参数,进行时间维度的特征学习进而预测下一时间序列的耗电量。然后以某公司的电力负荷数据为例进行验证,并与LSTM、CNN、RNN等模型的预测结果分析比较。结果表明上述混合多隐层模型预测准确度达98.94%,平均绝对误差(MAE)达到0.0066,均优于其他相关模型,证明以上混合预测模型在电力负荷预测精度方面具有更好的性能。基于上述理论,开发了能耗监控决策系统,实现设备状态实时监控和能耗智能预测功能,为解决传统制造业能耗需求不精确和能源库存浪费问题提供参考和指导。 展开更多
关键词 电力负荷预测 卷积神经网络 长短期记忆神经网络 混合多隐层组合模型
下载PDF
基于PCA-BPNN模型的埋地管道腐蚀速率预测研究
2
作者 于扬 孙东亮 《兰州理工大学学报》 CAS 北大核心 2024年第4期60-68,共9页
为了更加准确可靠地预测埋地管道的腐蚀速率,融合PCA分析法和多隐层BP人工神经网络模拟方法进行研究.选取陕西省某油气公司的埋地输油管道,构建8维度外腐蚀指标体系,在PCA-多隐层BPNN模型中模拟训练得到结果.通过PCA预处理将外腐蚀指标... 为了更加准确可靠地预测埋地管道的腐蚀速率,融合PCA分析法和多隐层BP人工神经网络模拟方法进行研究.选取陕西省某油气公司的埋地输油管道,构建8维度外腐蚀指标体系,在PCA-多隐层BPNN模型中模拟训练得到结果.通过PCA预处理将外腐蚀指标体系降为3维,以便减少多元素信息带来的耦合影响,模拟得到隐藏层参数最优的BPNN模型,预测腐蚀速率,求出预测值精确度,统计得到改进后方法精确度大于95%的个数是单一BP方法的2.5倍.为了检验PCA-多隐层BPNN方法的鲁棒性,另取20组数据代入验证,再次证实了PCA-多隐层BPNN模型所得的误差更小,更能满足实际工程需要. 展开更多
关键词 埋地管道 腐蚀速率 PCA-多隐层BPNN模型
下载PDF
基于特征工程的S-FCN火灾图像检测方法
3
作者 李海 熊升华 孙鹏 《中国安全科学学报》 CAS CSCD 北大核心 2024年第9期191-201,共11页
针对复杂背景下火灾图像检测深度学习算法存在的计算复杂度高、检测实时性差等问题,提出一种基于特征工程的单隐层全连接网络(S-FCN)火灾图像检测方法。首先,从图像中提取多色彩空间颜色特征,并使用互信息量进行多色彩空间颜色特征降维... 针对复杂背景下火灾图像检测深度学习算法存在的计算复杂度高、检测实时性差等问题,提出一种基于特征工程的单隐层全连接网络(S-FCN)火灾图像检测方法。首先,从图像中提取多色彩空间颜色特征,并使用互信息量进行多色彩空间颜色特征降维;其次,简化深度学习模型的网络结构,将单隐层全连接网络作为其主干网络,其中,多色彩空间下的颜色特征能够更好地表征火灾烟雾与火焰,多色彩空间颜色特征降维能够有效降低输入特征的冗余度,单隐层全连接网络能够有效减少模型在传递过程中的参数数量;最后,将该方法在真实的复杂背景火灾图像数据集上进行试验评估。结果表明:所提方法取得的检测精度为93.83%,取得的检测实时性帧率为10869帧/s,能够实现复杂场景下高精度、高速度的火灾图像检测。 展开更多
关键词 特征工程 单隐层全连接网络(S-FCN) 火灾图像 检测方法 色彩空间 特征降维
下载PDF
城市固废焚烧过程炉温与烟气含氧量多目标鲁棒预测模型
4
作者 胡开成 严爱军 汤健 《自动化学报》 EI CAS CSCD 北大核心 2024年第5期1001-1014,共14页
为实现城市固废焚烧(Municipal solid waste incineration,MSWI)过程炉温与烟气含氧量的准确预测,提出一种基于改进随机配置网络的多目标鲁棒建模方法(Multi-target robust modeling method based on improved stochastic configuration... 为实现城市固废焚烧(Municipal solid waste incineration,MSWI)过程炉温与烟气含氧量的准确预测,提出一种基于改进随机配置网络的多目标鲁棒建模方法(Multi-target robust modeling method based on improved stochastic configuration network,MRI-SCN).首先,设计了一种并行方式增量构建SCN隐含层,通过信息叠加与跨越连接来增强隐含层映射多样性,并利用参数自适应变化的监督不等式分配隐含层参数;其次,使用F范数与L_(2,1)范数正则项建立矩阵弹性网对模型参数进行稀疏约束,以建模炉温与烟气含氧量间的相关性;接着,采用混合拉普拉斯分布作为每个目标建模误差的先验分布,通过最大后验估计重新评估SCN模型的输出权值,以增强其鲁棒性;最后,利用城市固废焚烧过程的历史数据对所提建模方法的性能进行测试.实验结果表明,所提建模方法在预测精度与鲁棒性方面具有优势. 展开更多
关键词 城市固废焚烧 炉温 烟气含氧量 随机配置网络 隐含层并行构造 多目标鲁棒建模
下载PDF
基于MFO-BP算法的移动机器人定位研究
5
作者 陈泉 王湘江 《自动化仪表》 CAS 2024年第7期40-44,共5页
针对移动机器人定位问题,以自主搭建的复合式机器人为基础,提出一种基于飞蛾火焰优化-反向传播(MFO-BP)算法的移动机器人定位预测方法。将移动机器人视为一个“黑箱”,不单独考虑系统和非系统误差的影响,输入理论坐标值,输出预测坐标值... 针对移动机器人定位问题,以自主搭建的复合式机器人为基础,提出一种基于飞蛾火焰优化-反向传播(MFO-BP)算法的移动机器人定位预测方法。将移动机器人视为一个“黑箱”,不单独考虑系统和非系统误差的影响,输入理论坐标值,输出预测坐标值。试验结果表明,MFO-BP算法预测模型能有效进行移动机器人定位预测,并且精度远高于传统反向传播(BP)神经网络预测模型。为了验证模型结构对预测结果的影响,将MFO-BP算法预测模型分为单隐含层和双隐含层这两种。试验结果显示,MFO-BP算法双隐含层与单隐含层相比,前者平均绝对误差更小、误差波动范围也更小、预测误差趋势更平稳。MFO-BP算法双隐含层预测效果更优,可以应用于复合式机器人末端定位。 展开更多
关键词 移动机器人 定位 预测模型 飞蛾火焰优化算法 反向传播神经网络 隐含层
下载PDF
改进声发射信号的桥梁焊缝裂纹识别仿真研究
6
作者 李敏峰 周小龙 徐永峰 《计算机仿真》 2024年第2期163-166,217,共5页
针对因环境中存在过多噪声,导致桥梁焊缝裂纹识别精准度低的问题,提出基于声发射信号的桥梁焊缝裂纹识别方法。利用传感器提取桥梁周围的实时信号,通过信号在周期序列上的幅值变化,判定噪声信号,采用小波变换算法对噪声信号实施重构变换... 针对因环境中存在过多噪声,导致桥梁焊缝裂纹识别精准度低的问题,提出基于声发射信号的桥梁焊缝裂纹识别方法。利用传感器提取桥梁周围的实时信号,通过信号在周期序列上的幅值变化,判定噪声信号,采用小波变换算法对噪声信号实施重构变换,建立硬阈值和软阈值函数,约束噪声信号。采用神经元传递函数计算原始信号序列中隐含层神经元的具体特征表现参数,得到信号的特征类间平均值,通过类间参数求得特征量。以带有声发射信号提取技术的传感器作为识别载体,将特征参数输入到识别传感器中,针对不同的桥梁测试点,建立焊缝裂纹识别通道,完成有效识别。实验结果证明,所提方法的识别精准度较高,无论是以持续频率还是持续时间信号作为测试指标,均能实现高效识别。 展开更多
关键词 声发射信号 桥梁焊缝裂纹 硬阈值 神经元传递函数 隐含层神经元
下载PDF
基于BP神经网络的刀片切割竹枝性能研究
7
作者 杨梦迪 周兆兵 +1 位作者 孙炜 商庆清 《林业机械与木工设备》 2024年第3期4-9,共6页
为探究竹枝切割时的刀片切割性能影响因素,支持后续打枝装置的设计,开展竹枝切割刀片性能研究试验,通过单因素试验研究,利用切割阻力作为衡量标准,探究刀片切割性能与关键参数(刀片的滑动角、楔角和滑动速度)之间的相互关系。试验结果显... 为探究竹枝切割时的刀片切割性能影响因素,支持后续打枝装置的设计,开展竹枝切割刀片性能研究试验,通过单因素试验研究,利用切割阻力作为衡量标准,探究刀片切割性能与关键参数(刀片的滑动角、楔角和滑动速度)之间的相互关系。试验结果显示,随着刀片滑动角和楔角的减小,刀片切割性能呈现明显改善。同时,随着刀片滑动速度的增加,切割性能也呈现相应提升趋势。在多组实验中,采用不同的刀片滑切角度、楔角和滑切速度参数,对不同直径尺寸的竹枝进行切割,并收集了切割阻力的数据构成数据集,构建一个3层BP神经网络模型,研究了刀片切割性能与滑切角度、楔角以及滑切速度之间的关联,并应用相关模型进行了拟合和预测。在BP神经网络中,当隐含层节点数设定为9时,成功建立了刀片切割阻力模型,精准地预测了刀片切割过程中的阻力变化,对刀片切割竹枝性能研究具有一定参考价值。 展开更多
关键词 竹枝切割 试验 刀片切割性能 BP神经网络 隐含层节点数
下载PDF
基于Yu范数深度迁移度量学习的夹送辊剩余寿命预测
8
作者 孟飞 徐增丙 王志刚 《农业装备与车辆工程》 2024年第1期157-161,共5页
针对夹送辊历史数据少和相关寿命预测方法匮乏的问题,提出基于Yu范数深度迁移度量学习的夹送辊剩余寿命预测方法。首先使用Yu范数深度度量学习(DMN-Yu)对振动信号提取深层特征,并以主成分分析法(PCA)和自组织映射神经网络(SOM)相结合对... 针对夹送辊历史数据少和相关寿命预测方法匮乏的问题,提出基于Yu范数深度迁移度量学习的夹送辊剩余寿命预测方法。首先使用Yu范数深度度量学习(DMN-Yu)对振动信号提取深层特征,并以主成分分析法(PCA)和自组织映射神经网络(SOM)相结合对特征进行约简,构建一维健康因子(HI);再结合长短时记忆网络(LSTM)模型,通过迁移策略利用共享隐含层的方法对目标夹送辊进行预测分析。实验验证,经过深度迁移学习的LSTM模型预测效果更好,对夹送辊设备的健康状态评估及剩余使用寿命预测具有一定的指导意义。 展开更多
关键词 夹送辊 寿命预测 Yu范数 深度度量学习 共享隐含层迁移
下载PDF
基于自组织聚类和JS散度的RBF神经网络
9
作者 董镇林 伍世虔 +1 位作者 叶健 银开州 《计算机工程与设计》 北大核心 2024年第4期1062-1068,共7页
针对如何确定径向基函数(RBF)神经网络隐层结构这一问题进行研究,提出一种基于自组织聚类和JS散度的RBF神经网络。为解决K-means算法对初始值敏感的问题,提出基于距离的自组织初始聚类,将戴维森堡丁(DBI)指数作为准则函数,进一步提高聚... 针对如何确定径向基函数(RBF)神经网络隐层结构这一问题进行研究,提出一种基于自组织聚类和JS散度的RBF神经网络。为解决K-means算法对初始值敏感的问题,提出基于距离的自组织初始聚类,将戴维森堡丁(DBI)指数作为准则函数,进一步提高聚类精度,得到代表数据集分布特性的隐节点;为解决隐节点冗余和相似的问题,提出一种基于敏感度分析的隐节点删除方法和基于詹森-香农(JS)散度的隐节点合并方法。仿真结果验证了该算法的有效性。 展开更多
关键词 RBF神经网络 隐层结构 自组织聚类 K-MEANS算法 戴维森堡丁指数 敏感度分析 詹森-香农散度
下载PDF
基于机器学习算法的青少年电子烟使用及影响因素分析
10
作者 徐心怡 朱平华 +8 位作者 罗娜 蒋碧玲 张秀岚 白思怡 王宣伊 黄靖语 刘苏仪 潘怡双 谭琼 《广西医科大学学报》 CAS 2024年第1期117-123,共7页
目的:了解广西某市15岁以上青少年吸电子烟现状及影响因素,为控制电子烟在青少年中的流行提供资料参考。方法:通过多阶段分层整群随机抽样对广西某市15岁以上青少年进行问卷调查,综合运用logistic回归、随机森林、XGboost、支持向量机... 目的:了解广西某市15岁以上青少年吸电子烟现状及影响因素,为控制电子烟在青少年中的流行提供资料参考。方法:通过多阶段分层整群随机抽样对广西某市15岁以上青少年进行问卷调查,综合运用logistic回归、随机森林、XGboost、支持向量机模型、单隐藏层神经网络、KNN模型进行影响因素分析。结果:广西某市15岁以上青少年电子烟使用率为1.68%,其中高中生、职高生电子烟使用率分别为1.08%、1.74%;不同的机器学习模型在各项评价指标的表现上各有优劣;青少年使用电子烟的9个主要影响因素包括:过去30 d是否在互联网上看到电子烟广告、朋友是否吸烟、学习压力水平、是否看到过老师吸烟、抑郁情况、性别、公共场合是否看到有人吸烟、吸烟是否使年轻人具有吸引力、是否有人给免费烟草产品。结论:广西某市15岁以上青少年电子烟使用率相对较低,可将6种机器学习模型的结果结合起来对青少年电子烟使用行为进行预测,判断使用人群的特征。 展开更多
关键词 青少年 电子烟 机器学习 LOGISTIC回归模型 随机森林模型 XGboost模型 支持向量机模型 单隐藏层神经网络模型 KNN模型
下载PDF
基于BP神经网络隐层结构的研究及实例
11
作者 邱丹萍 《长江信息通信》 2024年第7期8-10,共3页
BP神经网络是神经网络中应用最为普遍的一种网络,随着人工智能技术的发展,各行各业也逐渐将BP神经网络运用在生活中,比如预测、推荐、识别等领域,都取得了一定的效果。但随着数据量的递增,BP神经网络也在进行预测时也有梯度下降等问题,... BP神经网络是神经网络中应用最为普遍的一种网络,随着人工智能技术的发展,各行各业也逐渐将BP神经网络运用在生活中,比如预测、推荐、识别等领域,都取得了一定的效果。但随着数据量的递增,BP神经网络也在进行预测时也有梯度下降等问题,许多专家也在不断对算法及网络结构进行调整。BP网络隐层结构的设计一直是不确定的,尤其是隐层单元数的确定缺乏理论依据,设计者大多依靠经验来确定。对于神经网络中BP网络的运用最为广泛,其中之一就是在函数收敛上的运用。文章主要是通过研究隐层层数和单元数的确定问题,来分析BP网络上的函数收敛性,通过比较在不同隐层层数和隐层节点下的收敛性来研究隐层结构对函数收敛性的影响,并将分析结果运用在股票预测中,实践表明,确定隐层节点数能在一定程度上改进预测误差。 展开更多
关键词 BP神经网络 隐层结构 函数拟合 预测
下载PDF
基于BP神经网络和数据挖掘的情感分析与心理预警模型研究 被引量:3
12
作者 朱佳雯 《电子设计工程》 2023年第20期100-104,共5页
针对传统心理问题处理算法对学生心理状态评估结果不准确、人工处理方式效率较低且难以面对海量数据等问题,提出了一种基于BP神经网络和数据挖掘的情感分析与心理预警算法。该算法采集原始心理数据,并通过数据预处理等步骤将原始数据处... 针对传统心理问题处理算法对学生心理状态评估结果不准确、人工处理方式效率较低且难以面对海量数据等问题,提出了一种基于BP神经网络和数据挖掘的情感分析与心理预警算法。该算法采集原始心理数据,并通过数据预处理等步骤将原始数据处理成规范化数据。同时,通过BP神经网络数据挖掘算法获取心理数据之间隐含的关系,使用SVM算法对数据挖掘结果进行分类分析,进而得到最终的心理预警结果。实验结果表明,所提算法在处理心理问题时具有93%以上的准确率,验证了该算法的有效性与稳定性。 展开更多
关键词 BP神经网络 数据挖掘 数据预处理 隐藏层 心理问题预警
下载PDF
基于深度学习的粉煤灰混凝土氯离子浓度预测 被引量:3
13
作者 章玉容 余威龙 +2 位作者 麻雪晴 骆天意 王京京 《北京工业大学学报》 CAS CSCD 北大核心 2023年第2期205-212,共8页
为研究深度学习方法在氯离子浓度预测中的应用,通过自然潮差环境下粉煤灰混凝土的长期暴露试验获取3150组自由氯离子浓度数据,建立不同激活函数、不同隐藏层层数的多层感知器(multi-layer perceptron,MLP)模型,开展考虑水灰比、暴露时... 为研究深度学习方法在氯离子浓度预测中的应用,通过自然潮差环境下粉煤灰混凝土的长期暴露试验获取3150组自由氯离子浓度数据,建立不同激活函数、不同隐藏层层数的多层感知器(multi-layer perceptron,MLP)模型,开展考虑水灰比、暴露时间、粉煤灰掺量、渗透深度4个输入参数影响的粉煤灰混凝土中的自由氯离子浓度预测研究.结果表明,采用ReLu函数及4层隐藏层构建MLP模型时,自由氯离子浓度的预测结果最优.同时,将构建的最优MLP模型开展基于未测参数的自由氯离子浓度预测,比基于菲克第二定律的预测结果更准确.因此,MLP模型具有精度高和适用范围广泛的特点,可作为氯盐环境下混凝土中自由氯离子浓度预测的新方法. 展开更多
关键词 自由氯离子浓度预测 深度学习 多层感知器 激活函数 隐藏层层数 粉煤灰混凝土
下载PDF
基于邻域粗糙集的气象因子选择在虾塘水温预测中的应用 被引量:1
14
作者 胡晶晶 罗永明 +3 位作者 张纲强 匡昭敏 谢映 曾行吉 《江苏农业学报》 CSCD 北大核心 2023年第3期732-740,共9页
基于邻域粗糙集对影响虾塘水温变化的气象因子进行选择,并选取模型预测虾塘水温,为南美白对虾养殖趋利避害提供科学参考。首先,将平均气温、最高气温、最低气温、降水量、气压、2 min风速、10 min风速和瞬时风速等8个气象因子组合输入S... 基于邻域粗糙集对影响虾塘水温变化的气象因子进行选择,并选取模型预测虾塘水温,为南美白对虾养殖趋利避害提供科学参考。首先,将平均气温、最高气温、最低气温、降水量、气压、2 min风速、10 min风速和瞬时风速等8个气象因子组合输入SFNN模型(单隐层前馈神经网络模型)、高斯回归模型和岭回归模型进行虾塘水温预测,选取预测效果最好的SFNN模型为本研究预测模型。然后,运用邻域粗糙集和熵理论,考虑气象因子和虾塘水温之间的相关性、冗余性和交互性,选出影响虾塘水温变化的主要气象因子。最后,利用选出的主要气象因子和SFNN模型实现虾塘水温预测。将基于邻域粗糙集选出的5个气象因子组合与8个气象因子组合,以及8个气象单因子分别输入SFNN模型,预测结果表明:邻域粗糙集选出的5个气象因子组合预测结果最好,其预测均方根误差、均方误差、平均绝对误差最小,分别为1.1211、1.2569和0.8938,决定系数(R2)为0.7916;在气象单因子中,气压对虾塘水温的预测结果较好。因此,基于邻域粗糙集选出的5个气象因子组合,通过SFNN模型进行虾塘水温预测结果最好,此方法在南美白对虾养殖趋利避害、防灾减灾中具有一定的实用价值。 展开更多
关键词 虾塘水温 气象因子 邻域粗糙集 SFNN模型
下载PDF
波形板混凝土组合墙抗震性能的有限元分析 被引量:1
15
作者 吴涛 杨旭 +2 位作者 彭剑锋 高怡 胡钢 《山西建筑》 2023年第6期62-65,共4页
基于国家大力推进新农村建设的需要和顺应国家着力发展装配式建筑的趋势,提出了一种新型双层波形板-混凝土组合墙,考虑波形钢板不同组合类型,采用ABAQUS对该新型组合墙的抗震性能进行研究分析。结果表明空腔暗柱是影响组合墙抗震性能的... 基于国家大力推进新农村建设的需要和顺应国家着力发展装配式建筑的趋势,提出了一种新型双层波形板-混凝土组合墙,考虑波形钢板不同组合类型,采用ABAQUS对该新型组合墙的抗震性能进行研究分析。结果表明空腔暗柱是影响组合墙抗震性能的重要因素。空腔暗柱大,组合墙的水平承载力和抗侧刚度提高,而耗能能力减弱。 展开更多
关键词 双层-波形板混凝土组合墙 空腔暗柱 抗震性能
下载PDF
多层人工神经网络合理结构的确定方法 被引量:36
16
作者 侯祥林 胡英 +1 位作者 李永强 徐心和 《东北大学学报(自然科学版)》 EI CAS CSCD 北大核心 2003年第1期35-38,共4页
隐层结构如何选择是多层人工神经网络应用中一个关键问题·基于多层神经网络优化算法原理和非线性方程理论,建立了多层神经网络计算输出和理想输出关系的非线性方程组,分析了权阈变量、标准样本数量和输出层单元数量的内在关系,给... 隐层结构如何选择是多层人工神经网络应用中一个关键问题·基于多层神经网络优化算法原理和非线性方程理论,建立了多层神经网络计算输出和理想输出关系的非线性方程组,分析了权阈变量、标准样本数量和输出层单元数量的内在关系,给出隐层层数和每个隐层单元数量选取应该满足的基本条件·提出多层神经网络合理结构,即隐层层数和每个隐层单元数量选取的一般原则,给出隐层结构定量求解的直接计算方法和间接优化计算方法·对具体算例进行了合理结构分析,通过神经网络优化算法对多种结构组合比较,表明所提出的合理结构分析方法的正确性·这种方法将为多层神经网络在工程应用中如何选取合理结构提供理论依据和选取有效方法· 展开更多
关键词 多层人工神经网络 隐层结构分析 隐层层数 隐层单元数量 非线性方程组 优化算法
下载PDF
前向神经网络隐含层节点数的一种优化算法 被引量:122
17
作者 夏克文 李昌彪 沈钧毅 《计算机科学》 CSCD 北大核心 2005年第10期143-145,共3页
由于前向神经网络隐含层节点数的确定尚无理论依据,为此提出一种基于黄金分割原理的优化算法,首先确定网络隐含层节点数频繁出现的区间范围;将网络总误差作为试验结果,然后利用黄金分割法搜索其区间中的理想数值;兼顾高精度的需要,将隐... 由于前向神经网络隐含层节点数的确定尚无理论依据,为此提出一种基于黄金分割原理的优化算法,首先确定网络隐含层节点数频繁出现的区间范围;将网络总误差作为试验结果,然后利用黄金分割法搜索其区间中的理想数值;兼顾高精度的需要,将隐含层节点数频繁出现的区间作拓展,可以求得逼近能力更强的节点数。算法分析和仿真例子表明,此优化算法是切实可行的,不仅能找到理想的隐含层节点数,而且能起到节省成本、提高搜索效率等功效。 展开更多
关键词 前向神经网络 隐含层节点数 黄金分割 优化算法 前向神经网络 优化算法 节点数 隐含层 黄金分割法 搜索效率 算法分析 逼近能力 总误差
下载PDF
关于BP网络变结构问题的研究 被引量:12
18
作者 郝培锋 肖文栋 +1 位作者 祝钢 徐心和 《控制与决策》 EI CSCD 北大核心 2001年第3期287-298,共12页
BP神经网络的收敛性涉及诸如网络初始权重赋值、隐结点个数以及隐层个数等问题。通过对BP神经网络隐结点个数的讨论 ,以及对 BP神经网络训练样本空间的研究 ,得出了一个重要结论 ,即网络结构可以随训练样本空间进行变换 ,从而使 BP神经... BP神经网络的收敛性涉及诸如网络初始权重赋值、隐结点个数以及隐层个数等问题。通过对BP神经网络隐结点个数的讨论 ,以及对 BP神经网络训练样本空间的研究 ,得出了一个重要结论 ,即网络结构可以随训练样本空间进行变换 ,从而使 BP神经网络能够进行结构化简。 展开更多
关键词 BP神经网络 变结构 阈值 学习算法
下载PDF
BP人工神经网络隐层结构设计的研究进展 被引量:70
19
作者 范佳妮 王振雷 钱锋 《控制工程》 CSCD 2005年第S1期109-113,共5页
指出BP人工神经网络隐层结构的确定,尤其是隐层神经元数目的选择历来是研究的热点。针对目前解决这一问题尚缺乏严格的理论依据,设计者多凭经验而定,介绍了用来优化设计隐层结构的可行方法,纵览了现有多种设计研究成果,从而探讨了新的... 指出BP人工神经网络隐层结构的确定,尤其是隐层神经元数目的选择历来是研究的热点。针对目前解决这一问题尚缺乏严格的理论依据,设计者多凭经验而定,介绍了用来优化设计隐层结构的可行方法,纵览了现有多种设计研究成果,从而探讨了新的设计方向。分析了网络隐层结构优化问题的产生及其理论依据,对各种设计方法进行了详细的分类综述, 探讨各自的优势与不足,并对神经网络结构优化问题的研究和发展做了评述与展望。 展开更多
关键词 BP神经网络 隐层结构设计 修剪法 增长法 遗传算法
下载PDF
神经网络在电力负荷预测中的应用 被引量:10
20
作者 刘瑾 杨海马 +1 位作者 陈抱雪 曾启澔 《自动化仪表》 CAS 北大核心 2012年第9期21-24,共4页
在短期负荷预测过程中,引起负荷变动的因素与负荷之间的非线性映射关系是造成预测结果与实际结果之间存在偏差的原因之一。神经网络具有很强的非线性映射能力和自学习能力。为提高短期负荷预测的精度,基于神经网络的研究方法,设计了预... 在短期负荷预测过程中,引起负荷变动的因素与负荷之间的非线性映射关系是造成预测结果与实际结果之间存在偏差的原因之一。神经网络具有很强的非线性映射能力和自学习能力。为提高短期负荷预测的精度,基于神经网络的研究方法,设计了预测网络。该网络以洋山深水港东港路10 kV开关站中沈家湾的日负荷数据为样本,对采集电量进行了预处理;然后对其隐层个数及节点个数进行了分析设计;最后对短期日负荷进行预测。对比结果表明,预测值与实际值吻合较好。 展开更多
关键词 负荷预测 非线性映射 神经网络 预处理 隐层 节点
下载PDF
上一页 1 2 19 下一页 到第
使用帮助 返回顶部