We discuss the problem of the generalization of Bell local hidden variable models for unstable particles as nucleons or decaying quantum bound states. We propose to extend the formalism of real deterministic hidden va...We discuss the problem of the generalization of Bell local hidden variable models for unstable particles as nucleons or decaying quantum bound states. We propose to extend the formalism of real deterministic hidden variables in the complex domain, in analogy with the quantum Gamow ket formalism, and we introduce a time dependent classical probability density distribution by which we implement hidden time dependence in the quantum expectation values. We suggest therefore a classical framework which may recover by asymptotic temporal limits the standard Bell stationary quantum statistical averages. Endly we discuss the possible relevance of our proposal for general non-isolated quantum systems in noninertial frames and the consequent dynamic effects of vacuum instabilities on E.P.R tests and Q.M. ensemble statistical averages.展开更多
We extend a previous model of the author which generalizes Bell local hidden variable models to the case of entangled photon pairs assuming that the standard Bell correlation functions depend on a hidden vacuum index....We extend a previous model of the author which generalizes Bell local hidden variable models to the case of entangled photon pairs assuming that the standard Bell correlation functions depend on a hidden vacuum index. We deduce a generalization of Bell theorem assuming that classical observables are not dichotomic and that photon pair emission and detection is not a stationary stochastic process. We derive a photon imperfect polarization correlation functions due to rotational invariance breaking induced by hidden vacuum spin currents. We implement formally this approach deducing a generalization of C.H.S.H. inequalities which asymptotically converges to the standard one and which might be competitive with standard quantum mechanics predictions. We suggest to test this inequalities conceiving new E.P.R.-Bell like tests with time dependent detector efficiency and photon flux. Finally, we suggest to apply these generalized inequalities to the correlation functions of entangled classical spinning waves realized recently with metamaterials.展开更多
文摘We discuss the problem of the generalization of Bell local hidden variable models for unstable particles as nucleons or decaying quantum bound states. We propose to extend the formalism of real deterministic hidden variables in the complex domain, in analogy with the quantum Gamow ket formalism, and we introduce a time dependent classical probability density distribution by which we implement hidden time dependence in the quantum expectation values. We suggest therefore a classical framework which may recover by asymptotic temporal limits the standard Bell stationary quantum statistical averages. Endly we discuss the possible relevance of our proposal for general non-isolated quantum systems in noninertial frames and the consequent dynamic effects of vacuum instabilities on E.P.R tests and Q.M. ensemble statistical averages.
文摘We extend a previous model of the author which generalizes Bell local hidden variable models to the case of entangled photon pairs assuming that the standard Bell correlation functions depend on a hidden vacuum index. We deduce a generalization of Bell theorem assuming that classical observables are not dichotomic and that photon pair emission and detection is not a stationary stochastic process. We derive a photon imperfect polarization correlation functions due to rotational invariance breaking induced by hidden vacuum spin currents. We implement formally this approach deducing a generalization of C.H.S.H. inequalities which asymptotically converges to the standard one and which might be competitive with standard quantum mechanics predictions. We suggest to test this inequalities conceiving new E.P.R.-Bell like tests with time dependent detector efficiency and photon flux. Finally, we suggest to apply these generalized inequalities to the correlation functions of entangled classical spinning waves realized recently with metamaterials.