期刊文献+
共找到28篇文章
< 1 2 >
每页显示 20 50 100
Risk Identification based on Hidden Semi-Markov Model in Smart Distribution Network
1
作者 Fangyuan Chang Wanxing Sheng +2 位作者 Tianshu Zhang Yu Zhang Xiaohui Song 《Energy and Power Engineering》 2013年第4期954-957,共4页
The smart distribution system is the critical part of the smart grid, which also plays an important role in the safe and reliable operation of the power grid. The self-healing function of smart distribution network wi... The smart distribution system is the critical part of the smart grid, which also plays an important role in the safe and reliable operation of the power grid. The self-healing function of smart distribution network will effectively improve the security, reliability and efficiency, reduce the system losses, and promote the development of sustainable energy of the power grid. The risk identification process is the most fundamental and crucial part of risk analysis in the smart distribution network. The risk control strategies will carry out on fully recognizing and understanding of the risk events and the causes. On condition that the risk incidents and their reason are identified, the corresponding qualitative / quantitative risk assessment will be performed based on the influences and ultimately to develop effective control measures. This paper presents the concept and methodology on the risk identification by means of Hidden Semi-Markov Model (HSMM) based on the research of the relationship between the operating characteristics/indexes and the risk state, which provides the theoretical and practical support for the risk assessment and risk control technology. 展开更多
关键词 RISK IDENTIFICATION hidden semi-markov modelS SMART DISTRIBUTION NETWORK
下载PDF
基于情绪向量的隐半马尔可夫模型股市拐点预测方法
2
作者 姚宏亮 江永生 +1 位作者 杨静 俞奎 《合肥工业大学学报(自然科学版)》 CAS 北大核心 2024年第10期1335-1340,共6页
股市的情绪化倾向是股票市场具有高度不确定性的主要原因,直接利用历史数据的股票趋势预测方法难以适应市场情绪的多变性,在实际应用中效果不理想。文章针对市场情绪的不稳定性导致股市拐点难以预测的问题,提出一种基于情绪向量的隐半... 股市的情绪化倾向是股票市场具有高度不确定性的主要原因,直接利用历史数据的股票趋势预测方法难以适应市场情绪的多变性,在实际应用中效果不理想。文章针对市场情绪的不稳定性导致股市拐点难以预测的问题,提出一种基于情绪向量的隐半马尔可夫模型股市拐点预测方法(hidden semi-Markov model stock turning point prediction method based on sentiment vector,SV-HSMM)。针对市场情绪不可观察性,选取与市场情绪相关的主要特征,使用马尔可夫毯融合成市场情绪;利用隐半马尔可夫模型建模市场环境,构建市场情绪、市场状态和状态持续时间之间的结构关系;引入情绪向量平滑情绪的多变性,并利用Kullback-Leibler(KL)距离量化情绪热度;利用隐半马尔可夫模型的动态推理实现股市拐点预测。结果表明情绪向量方法具有更好的预测效果。 展开更多
关键词 市场情绪 情绪向量 隐半马尔可夫模型(hsmm) Kullback-Leibler(KL)距离
下载PDF
基于KPCA-HSMM设备退化状态识别与故障预测方法研究 被引量:28
3
作者 曾庆虎 邱静 +1 位作者 刘冠军 谭晓栋 《仪器仪表学报》 EI CAS CSCD 北大核心 2009年第7期1341-1346,共6页
为消除多通道观测信息冗余,压缩高维故障特征,提出基于KPCA多通道特征信息融合的HSMM设备退化状态识别与故障预测新方法。首先,对采集的单通道振动信号进行小波相关滤波处理,构造单通道振动信号的小波相关特征尺度熵向量,然后,利用KPCA... 为消除多通道观测信息冗余,压缩高维故障特征,提出基于KPCA多通道特征信息融合的HSMM设备退化状态识别与故障预测新方法。首先,对采集的单通道振动信号进行小波相关滤波处理,构造单通道振动信号的小波相关特征尺度熵向量,然后,利用KPCA方法对多通道的小波相关特征尺度熵向量进行冗余消除和特征融合,得到多通道的融合小波相关特征尺度熵向量,并以此向量作为HSMM的输入进行训练,建立基于HSMM的设备运行状态分类器与故障预测模型,从而实现设备退化状态识别与故障预测。将其应用到滚动轴承的退化状态识别与故障预测中,验证了该方法的有效性。 展开更多
关键词 故障预测 状态识别 小波相关特征尺度熵 信息融合 KPCA 隐半马尔可夫模型(hsmm)
下载PDF
基于小波相关特征尺度熵的HSMM设备退化状态识别与故障预测方法 被引量:16
4
作者 曾庆虎 邱静 刘冠军 《仪器仪表学报》 EI CAS CSCD 北大核心 2008年第12期2559-2564,共6页
隐半马尔可夫模型(HSMM)是隐马尔可夫模型(HMM)的一种扩展模型,是在已定义的HMM结构上加入了时间组成部分,克服了因马尔可夫链的假设造成HMM建模所具有的局限性,与HMM相比具有更好的建模能力和分析能力,而且可以直接用于预测。基于振动... 隐半马尔可夫模型(HSMM)是隐马尔可夫模型(HMM)的一种扩展模型,是在已定义的HMM结构上加入了时间组成部分,克服了因马尔可夫链的假设造成HMM建模所具有的局限性,与HMM相比具有更好的建模能力和分析能力,而且可以直接用于预测。基于振动信号与语音信号的相似性,将HSMM引入机械设备退化状态识别与故障预测中,提出基于小波相关特征尺度熵(WCFSE)的HSMM设备退化状态识别与故障预测方法。首先将小波相关滤波法与信息熵理论相结合得到能敏感表征故障严重程度的WCFSE向量,并以此向量作为HSMM的输入进行训练,建立基于HSMM的设备运行状态分类器与故障预测模型,从而实现设备退化状态识别与故障预测。将其应用到滚动轴承的退化状态识别与故障预测中,验证了该方法的有效性。 展开更多
关键词 故障预测 状态识别 小波相关特征尺度熵 隐半马尔可夫模型(hsmm) 退化状态
下载PDF
基于HSMM的机械故障演化规律分析建模与预测 被引量:5
5
作者 曾庆虎 邱静 刘冠军 《机械强度》 CAS CSCD 北大核心 2010年第5期695-701,共7页
状态维修是工程实践中提出的一个主要问题,故障预测(prognostics)是实现状态维修的核心支撑技术。但是目前故障预测技术研究很少涉及故障演化规律分析与建模,这是进行故障预测研究的基础。文中在分析机械故障形成的一般过程、基本特性... 状态维修是工程实践中提出的一个主要问题,故障预测(prognostics)是实现状态维修的核心支撑技术。但是目前故障预测技术研究很少涉及故障演化规律分析与建模,这是进行故障预测研究的基础。文中在分析机械故障形成的一般过程、基本特性与演化规律的基础上,根据故障演变过程退化状态和HSMM(hidden semi-Markov model)的状态都是通过表现来感知的特点,利用HSMM对机械故障演化规律进行建模,并提出基于HSMM的机械故障预测方法,最后将其应用到滚动轴承的故障预测中,验证该方法的有效性。 展开更多
关键词 故障预测 机械故障 建模 演化规律 隐半马尔可夫模型(hiddensemi-markov model hsmm)
下载PDF
基于HSMM的两阶段设备缺陷状态识别方法 被引量:3
6
作者 王宁 孙树栋 +1 位作者 蔡志强 李淑敏 《计算机应用研究》 CSCD 北大核心 2011年第12期4560-4563,共4页
针对传统马尔可夫模型(HMM)状态停留时间必须服从指数分布假设的不足,提出了一种基于隐半马尔可夫模型(HSMM)的两阶段设备缺陷状态识别方法。首先,通过分析HSMM模型的参数构成及基本特点,并结合两阶段设备的劣化过程特点提出合理的假设... 针对传统马尔可夫模型(HMM)状态停留时间必须服从指数分布假设的不足,提出了一种基于隐半马尔可夫模型(HSMM)的两阶段设备缺陷状态识别方法。首先,通过分析HSMM模型的参数构成及基本特点,并结合两阶段设备的劣化过程特点提出合理的假设条件,建立起用于描述两阶段设备运行状态的HSMM模型;其次,针对HSMM模型的参数估计问题,引入最大似然估计法,并提出了小样本条件下求解状态持续时间的方法;再次,基于建立的HSMM模型,给出了两阶段设备缺陷状态早期识别的计算公式及步骤,通过对状态停留时间的概率估计实现了对缺陷状态的早期识别;最后,通过计算机仿真方法模拟了HSMM模型的建模、参数估计及缺陷状态识别过程,从而验证了该方法的有效性和准确性。 展开更多
关键词 状态识别 延迟时间 隐半马尔可夫模型 两阶段设备
下载PDF
基于离散HSMM的故障预测模型 被引量:6
7
作者 桂林 武小悦 《计算机应用研究》 CSCD 北大核心 2008年第11期3320-3322,3327,共4页
提出了一种基于离散HSMM的故障预测模型,根据部分观测矢量预测系统下一时刻处于各个状态的概率。结合HSMM的前向—后向(FB)算法,给出了部分观测下HSMM的状态预测算法。将提出的模型应用于减速箱故障预测中,结果表明该方法可以有效地进... 提出了一种基于离散HSMM的故障预测模型,根据部分观测矢量预测系统下一时刻处于各个状态的概率。结合HSMM的前向—后向(FB)算法,给出了部分观测下HSMM的状态预测算法。将提出的模型应用于减速箱故障预测中,结果表明该方法可以有效地进行故障预测。 展开更多
关键词 隐半马欠可夫模型 故障预测 状态持续建模 前向—后向算法
下载PDF
基于G-AHSMM的设备剩余寿命预测研究 被引量:2
8
作者 张青山 张思岩 +1 位作者 肖萌 徐伟 《沈阳工业大学学报(社会科学版)》 2022年第2期151-158,共8页
伴随大数据技术和智能制造的快速发展,生产设备的预知维修及多台设备的联合维修决策已成为工业制造业企业备受关注和亟待解决的现实问题。而服役设备剩余寿命的精准预测,又是预知维修决策和联合维修决策的前提。对已有设备寿命预测方法... 伴随大数据技术和智能制造的快速发展,生产设备的预知维修及多台设备的联合维修决策已成为工业制造业企业备受关注和亟待解决的现实问题。而服役设备剩余寿命的精准预测,又是预知维修决策和联合维修决策的前提。对已有设备寿命预测方法进行比较分析,将隐半马尔可夫模型加以拓展,结合伽马分布,构建设备状态监测数据驱动的剩余寿命预测模型G-AHSMM,给出求解方法,并基于某涡轮发动机的状态监测数据进行验证分析。结果表明:预测模型不仅规避了以往“状态观测值之间相互独立”的不实假设,而且相比传统HSMM具有更高的现实拟合性、求解简捷性和预测精准性,可作为企业预测服役设备剩余寿命的有效工具。 展开更多
关键词 智能制造 设备寿命 剩余寿命预测 隐半马尔可夫模型 伽马分布 前向后向算法 状态识别
下载PDF
基于改进HSMM的设备故障预测方法研究 被引量:3
9
作者 夏震宇 杨波 《现代制造工程》 CSCD 北大核心 2011年第8期118-122,共5页
针对传统隐半马尔科夫模型(HSMM)在故障诊断和预测应用中存在的不足,对传统HSMM做了以下改进:一是将状态持续时间概率分布和监测值概率分布连续化,并假定其服从威布尔分布;二是基于状态开始时间的识别,提出了状态剩余持续时间;三是提出... 针对传统隐半马尔科夫模型(HSMM)在故障诊断和预测应用中存在的不足,对传统HSMM做了以下改进:一是将状态持续时间概率分布和监测值概率分布连续化,并假定其服从威布尔分布;二是基于状态开始时间的识别,提出了状态剩余持续时间;三是提出了时变转移概率的概念,给出了各时刻转移概率的计算方法。确立了基于改进HSMM的故障诊断和预测的方法体系,给出了故障诊断判据和设备剩余寿命的计算式。案例研究表明方法是合理有效的。 展开更多
关键词 故障预测 故障诊断 隐半马尔科夫模型 状态持续时间
下载PDF
结合SVM和香农能量的HSMM心音分割算法 被引量:4
10
作者 许春冬 林海 《数据采集与处理》 CSCD 北大核心 2021年第5期950-959,共10页
针对基于逻辑回归的隐半马尔可夫模型中希尔伯特(Hilbert)变换提取的心音包络具有较大毛刺,提出一种结合支持向量机(Support vector machine,SVM)和香农能量的隐半马尔可夫模型(Hidden semi-Markov model,HSMM)心音分割算法。首先采用... 针对基于逻辑回归的隐半马尔可夫模型中希尔伯特(Hilbert)变换提取的心音包络具有较大毛刺,提出一种结合支持向量机(Support vector machine,SVM)和香农能量的隐半马尔可夫模型(Hidden semi-Markov model,HSMM)心音分割算法。首先采用小波降噪的方法对心音进行降噪,接着根据R峰和T波标记心音,提取香农能量包络等特征,然后对结合逻辑回归模型(Logistic regression,LR)的HSMM相关参数进行训练,并借助Viterbi算法推测出最可能的状态。最后,通过SVM模型识别第一心音S1和第二心音S2。该算法无需设置硬阈值,有效地抑制了噪声,更有助于包络的提取。实验结果表明,提出的算法分割精确度较参考算法得到显著的提升,具有良好的抗噪性能,取得了更好的分割效果。 展开更多
关键词 心音分割 香农能量 包络特征 支持向量机 隐半马尔可夫模型
下载PDF
基于HSMM的铝空电池后期SOC估计
11
作者 张榆平 陈栋 +3 位作者 罗杨 杨忠孝 朱贤彬 罗安源 《电子科技大学学报》 EI CAS CSCD 北大核心 2017年第2期380-385,共6页
电池荷电状态(SOC)的估算精度是影响新能源汽车性能的重要因素之一。传统的安时法由于累积误差较大始终无法满足精确的SOC估计。该文采用基于隐半马尔可夫模型(HSMM)的SOC预测作为安时法的一个补充,使铝空电池后期估计精度可以得到保障... 电池荷电状态(SOC)的估算精度是影响新能源汽车性能的重要因素之一。传统的安时法由于累积误差较大始终无法满足精确的SOC估计。该文采用基于隐半马尔可夫模型(HSMM)的SOC预测作为安时法的一个补充,使铝空电池后期估计精度可以得到保障。该模型的每个不同状态产生多组观察值,根据各个状态之间的转换概率以及状态驻留时间可以比较准确地预测后期各个状态下的剩余寿命。经过实验仿真验证,与单一的安时法相比,结合HSMM的SOC估计精度在后期有较大提升。 展开更多
关键词 铝空电池 安时法 隐半马尔可夫模型 荷电状态
下载PDF
基于TV-HSMM的海底管道寿命预测
12
作者 张新生 裘瑾 《材料保护》 CAS CSCD 北大核心 2019年第11期77-84,90,共9页
由于海底油气管道的退化状态具有动态不可监测性,为避免穿孔泄露导致管道安全事故,提出了基于TV-HSMM的海底管道腐蚀预测方法。首先,利用海底管道全寿命周期数据建立隐半马尔科夫模型;接着,为适应油气管道实际退化过程,通过与时变矩阵... 由于海底油气管道的退化状态具有动态不可监测性,为避免穿孔泄露导致管道安全事故,提出了基于TV-HSMM的海底管道腐蚀预测方法。首先,利用海底管道全寿命周期数据建立隐半马尔科夫模型;接着,为适应油气管道实际退化过程,通过与时变矩阵结合的方法改善其状态驻留时间为固定值这一问题;然后,根据油气管道典型退化趋势,将其退化过程划分为3个阶段,并赋予不同的参数值计算得到3种时变转移矩阵;最后,利用某油气管道的全寿命周期数据训练基于时变状态的隐半马尔科夫模型和原模型,预测其剩余寿命。结果表明:改进后基于时变矩阵的隐半马尔科夫模型在原隐半马尔科夫模型的基础上提高了精度,其预测出的油气管道剩余寿命与实际寿命的相对误差显著缩小,为海底油气管道安全平稳运行提供了更好的保障。 展开更多
关键词 海底油气管道 剩余寿命预测 时变性 隐半马尔科夫模型 状态转移矩阵
下载PDF
A novel approach to equipment health management based on auto-regressive hidden semi-Markov model(AR-HSMM) 被引量:5
13
作者 DONG Ming 《Science in China(Series F)》 2008年第9期1291-1304,共14页
As a new maintenance method, CBM (condition based maintenance) is becoming more and more important for the health management of complicated and costly equipment. A prerequisite to widespread deployment of CBM techno... As a new maintenance method, CBM (condition based maintenance) is becoming more and more important for the health management of complicated and costly equipment. A prerequisite to widespread deployment of CBM technology and prac- tice in industry is effective diagnostics and prognostics. Recently, a pattern recog- nition technique called HMM (hidden Markov model) was widely used in many fields. However, due to some unrealistic assumptions, diagnositic results from HMM were not so good, and it was difficult to use HMM directly for prognosis. By relaxing the unrealistic assumptions in HMM, this paper presents a novel approach to equip- ment health management based on auto-regressive hidden semi-Markov model (AR-HSMM). Compared with HMM, AR-HSMM has three advantages: 1) It allows explicitly modeling the time duration of the hidden states and therefore is capable of prognosis. 2) It can relax observations' independence assumption by accom- modating a link between consecutive observations. 3) It does not follow the unre- alistic Markov chain's memoryless assumption and therefore provides more pow- erful modeling and analysis capability for real problems. To facilitate the computa- tion in the proposed AR-HSMM-based diagnostics and prognostics, new forward- backward variables are defined and a modified forward-backward algorithm is de- veloped. The evaluation of the proposed methodology was carried out through a real world application case study: health diagnosis and prognosis of hydraulic pumps in Caterpillar Inc. The testing results show that the proposed new approach based on AR-HSMM is effective and can provide useful support for the decision- making in equipment health management. 展开更多
关键词 auto-regressive hidden semi-markov model DIAGNOSIS PROGNOSIS Markov model
原文传递
基于用户行为的社交网络人格特质识别方法 被引量:3
14
作者 谢柏林 黎琦 +1 位作者 魏娜 邝建 《计算机工程》 CAS CSCD 北大核心 2023年第1期279-286,294,共9页
社交网络已成为人们获取和发布信息的一个重要平台,也是黑客发起网络诈骗的主要场地。大多数黑客在发起网络诈骗之前,首先会判别目标用户的主要人格特点,然后根据主要人格特点制定与其接触的策略。因此,面向社交网络用户的人格特质识别... 社交网络已成为人们获取和发布信息的一个重要平台,也是黑客发起网络诈骗的主要场地。大多数黑客在发起网络诈骗之前,首先会判别目标用户的主要人格特点,然后根据主要人格特点制定与其接触的策略。因此,面向社交网络用户的人格特质识别方法的研究对提高用户识别社交网络诈骗能力具有重要意义。提出基于用户的人格特质识别方法。通过构建面向社交网络的人格特质词典提取用户发表或转发文本信息中能反映用户主要人格特质类型的观测值,采用5个具有不同参数值的隐半马尔可夫模型刻画用户在社交网络上发表或转发文本信息的行为过程。在人格特质识别阶段,通过计算每个用户在发表或转发文本信息过程中产生的观测序列相对于模型的平均对数似然概率,以识别用户所属的人格特质类型。在采集的新浪微博数据集上进行实验,结果表明,当假正率为10%时,该方法的总真正率为93.18%,能准确识别用户的人格特质类型。 展开更多
关键词 社交网络 人格特质 隐半马尔可夫模型 用户行为 网络诈骗
下载PDF
Object Tracking and Tracing:Hidden Semi-Markov Model Based Probabilistic Location Determination
15
作者 吴捷 王东 盛焕烨 《Journal of Shanghai Jiaotong university(Science)》 EI 2011年第4期466-473,共8页
The enhancement of radio frequency identification(RFID) technology to track and trace objects has attracted a lot of attention from the healthcare and the supply chain industry.However,RFID systems do not always funct... The enhancement of radio frequency identification(RFID) technology to track and trace objects has attracted a lot of attention from the healthcare and the supply chain industry.However,RFID systems do not always function reliably under complex and variable deployment environment.In many cases,RFID systems provide only probabilistic observations of object states.Thus,an approach to predict,record and track real world object states based upon probabilistic RFID observations is required.Hidden Markov model(HMM) has been used in the field of probabilistic location determination.But the inherent duration probability density of a state in HMM is exponential,which may be inappropriate for modeling of object location transitions.Hence,in this paper,we put forward a hidden semi-Markov model(HSMM) based approach for probabilistic location determination. We evaluated its performance comparing with that of the HMM-based approach.The results show that the HSMM-based approach provides a more accurate determination of real world object states based on observation data. 展开更多
关键词 object tracking and tracing hidden semi-markov model(hsmm) probabilistic location determination radio frequency identification(RFID)
原文传递
基于小波特征尺度熵-隐半马尔可夫模型的设备退化状态识别方法及应用 被引量:7
16
作者 曾庆虎 邱静 +1 位作者 刘冠军 谭晓栋 《兵工学报》 EI CAS CSCD 北大核心 2008年第2期198-203,共6页
机械设备从正常到故障往往经历一系列退化状态,正确识别设备当前所处的退化状态,对预防设备进一步退化和故障的发生具有重要意义。提出了一种基于小波特征尺度熵-隐半马尔可夫模型(HSMM)的设备退化状态识别新方法。通过小波变换提取小... 机械设备从正常到故障往往经历一系列退化状态,正确识别设备当前所处的退化状态,对预防设备进一步退化和故障的发生具有重要意义。提出了一种基于小波特征尺度熵-隐半马尔可夫模型(HSMM)的设备退化状态识别新方法。通过小波变换提取小波特征尺度熵,然后构造信号的小波特征尺度熵向量,并以此作为HSMM的输入进行训练,建立基于HSMM的机械设备运行状态分类器,从而实现设备退化状态的识别。并且以滚动轴承为例,对正常和几种故障程度不同的滚动体运行状态进行了识别,实验结果表明该方法能有效的识别设备的退化状态。 展开更多
关键词 信息处理技术 小波特征尺度熵 隐半马尔可夫模型(hsmm) 状态识别 退化状态
下载PDF
小波相关特征尺度熵和隐半马尔可夫模型在设备退化状态识别中的应用 被引量:12
17
作者 曾庆虎 邱静 刘冠军 《机械工程学报》 EI CAS CSCD 北大核心 2008年第11期236-241,247,共7页
为正确识别机械设备当前所处的退化状态,预防设备进一步退化和故障的发生,提出一种基于小波相关特征尺度熵和隐半马尔可夫模型(Hidden semi-Markov models,HSMM)的设备退化状态识别新方法。对采集到的设备振动信号进行小波相关滤波处理... 为正确识别机械设备当前所处的退化状态,预防设备进一步退化和故障的发生,提出一种基于小波相关特征尺度熵和隐半马尔可夫模型(Hidden semi-Markov models,HSMM)的设备退化状态识别新方法。对采集到的设备振动信号进行小波相关滤波处理,得到信噪比较高的尺度域小波系数,在此基础上结合信息熵理论提出了沿尺度分布的小波相关特征尺度熵概念。构造信号的小波相关特征尺度熵/矢量,并以此矢量作为HSMM的输入进行训练,建立基于HSMM的机械设备运行状态分类器,从而实现设备退化状态的识别。以滚动轴承为例,对正常和几种故障程度不同的滚动体运行状态进行了识别,同时还与基于小波相关特征尺度熵-HMM的状态识别法进行了比较,试验结果表明该方法能有效识别设备的退化状态。 展开更多
关键词 小波相关特征尺度熵 隐半马尔可夫模型(hsmm) 状态识别 退化状态
下载PDF
基于隐半马尔可夫模型设备退化状态识别方法研究 被引量:10
18
作者 曾庆虎 邱静 刘冠军 《机械科学与技术》 CSCD 北大核心 2008年第4期429-432,共4页
机械设备从正常到故障往往经历一系列退化状态,正确识别与估计设备当前所处的退化状态,对预防设备进一步退化和故障的发生具有重要意义。隐半马尔可夫模型(Hidden Semi-MarkovModels,HSMM)是隐马尔可夫模型(hidden Markov models,HMM)... 机械设备从正常到故障往往经历一系列退化状态,正确识别与估计设备当前所处的退化状态,对预防设备进一步退化和故障的发生具有重要意义。隐半马尔可夫模型(Hidden Semi-MarkovModels,HSMM)是隐马尔可夫模型(hidden Markov models,HMM)的一种扩展模型,克服了因马尔可夫链的假设造成HMM建模所具有的局限性,比HMM具有更好的建模能力和分析能力。由状态识别和HMM本质上的相通性,将HSMM引入到机械设备的状态识别中,提出了一种基于HSMM状态识别方法,描述了该模型的拓扑结构和主要参数以及相应的训练和识别算法。最后通过滚动轴承试验系统验证了方法的有效性。 展开更多
关键词 隐半马尔可夫模型(hsmm) 状态识别 退化状态 滚动轴承
下载PDF
基于时变状态转移隐半马尔科夫模型的寿命预测 被引量:15
19
作者 何兆民 王少萍 《湖南大学学报(自然科学版)》 EI CAS CSCD 北大核心 2014年第8期47-53,共7页
隐半马尔科夫模型在进行系统状态估计及寿命预测时,其状态转移概率矩阵是固定值,得到的剩余寿命预测值呈阶梯状变化,与系统的实际剩余寿命值之间存在着较大的误差.针对上述问题,提出了具有时变状态转移概率矩阵的隐半马尔科夫模型,根据... 隐半马尔科夫模型在进行系统状态估计及寿命预测时,其状态转移概率矩阵是固定值,得到的剩余寿命预测值呈阶梯状变化,与系统的实际剩余寿命值之间存在着较大的误差.针对上述问题,提出了具有时变状态转移概率矩阵的隐半马尔科夫模型,根据系统的3种典型退化状态分析,给出3种不同的状态转移系数.与初始状态转移矩阵相结合,得到随时间变化的状态转移矩阵.提高系统在当前健康状态下的剩余持续时间估计精度,最终得到更为准确的总体剩余寿命预测值.结果表明,基于时变状态转移概率矩阵的隐半马尔科夫模型相比传统的隐半马尔科夫模型,可显著提高剩余寿命预测的准确性. 展开更多
关键词 时变状态转移概率 隐半马尔科夫模型 状态估计 寿命预测
下载PDF
基于振动信号的轴承早期异常状态识别方法研究 被引量:3
20
作者 孙磊 贾云献 +2 位作者 刘峰 李华 腾红智 《轴承》 北大核心 2013年第7期59-63,共5页
针对轴承早期异常状态识别问题,提出了一种基于振动信号和HSMM-DBN的轴承早期异常状态识别方法,研究了隐半马尔科夫模型转换为动态贝叶斯网络(HSMM-DBN)的优点和基本过程,并应用该方法对试验数据进行了分析。结果表明,该方法能够有效识... 针对轴承早期异常状态识别问题,提出了一种基于振动信号和HSMM-DBN的轴承早期异常状态识别方法,研究了隐半马尔科夫模型转换为动态贝叶斯网络(HSMM-DBN)的优点和基本过程,并应用该方法对试验数据进行了分析。结果表明,该方法能够有效识别轴承故障的早期异常状态,为机械设备异常状态识别提供了一种新的有效方法。 展开更多
关键词 滚动轴承 故障诊断 隐半马尔科夫模型 动态贝叶斯网络 异常状态识别
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部