The accurate representation of lithium plating and aging phenomena has posed a persistent challenge within the battery research community.Empirical evidence underscores the pivotal role of cell structure in influencin...The accurate representation of lithium plating and aging phenomena has posed a persistent challenge within the battery research community.Empirical evidence underscores the pivotal role of cell structure in influencing aging behaviors and lithium plating within lithium-ion batteries(LIBs).Available lithium-ion plating models often falter in detailed description when integrating the structural intricacies.To address this challenge,this study proposes an innovative hierarchical model that intricately incorporates the layered rolling structure in cells.Notably,our model demonstrates a remarkable capacity to predict the non-uniform distribution of current density and overpotential along the rolling direction of LIBs.Subsequently,we delve into an insightful exploration of the structural factors that influence lithium plating behavior,leveraging the foundation laid by our established model.Furthermore,we easily update the hierarchical model by considering aging factors.This aging model effectively anticipates capacity fatigue and lithium plating tendencies across individual layers of LIBs,all while maintaining computational efficiency.In light of our findings,this model yields novel perspectives on capacity fatigue dynamics and local lithium plating behaviors,offering a substantial advancement compared to existing models.This research paves the way for more efficient and tailored LIB design and operation,with broad implications for energy storage technologies.展开更多
The state of in situ stress is a crucial parameter in subsurface engineering,especially for critical projects like nuclear waste repository.As one of the two ISRM suggested methods,the overcoring(OC)method is widely u...The state of in situ stress is a crucial parameter in subsurface engineering,especially for critical projects like nuclear waste repository.As one of the two ISRM suggested methods,the overcoring(OC)method is widely used to estimate the full stress tensors in rocks by independent regression analysis of the data from each OC test.However,such customary independent analysis of individual OC tests,known as no pooling,is liable to yield unreliable test-specific stress estimates due to various uncertainty sources involved in the OC method.To address this problem,a practical and no-cost solution is considered by incorporating into OC data analysis additional information implied within adjacent OC tests,which are usually available in OC measurement campaigns.Hence,this paper presents a Bayesian partial pooling(hierarchical)model for combined analysis of adjacent OC tests.We performed five case studies using OC test data made at a nuclear waste repository research site of Sweden.The results demonstrate that partial pooling of adjacent OC tests indeed allows borrowing of information across adjacent tests,and yields improved stress tensor estimates with reduced uncertainties simultaneously for all individual tests than they are independently analysed as no pooling,particularly for those unreliable no pooling stress estimates.A further model comparison shows that the partial pooling model also gives better predictive performance,and thus confirms that the information borrowed across adjacent OC tests is relevant and effective.展开更多
Aspect-oriented modeling can uncover potential design faults, yet most existing work fails to achieve both separation and composition in a natural and succinct way. This study presents an aspect-oriented modeling and ...Aspect-oriented modeling can uncover potential design faults, yet most existing work fails to achieve both separation and composition in a natural and succinct way. This study presents an aspect-oriented modeling and analysis approach with hierarchical Coloured Petri Nets(HCPN). HCPN has sub-models and well-defined semantics combining a set of submodels. These two characteristics of HCPN are nicely integrated into aspect oriented modeling. Submodels are used to model aspects while the combination mechanism contributes to aspects weaving. Furthermore, the woven aspect oriented HCPN model can be simulated and analyzed by the CPN Tools. A systematic web application case study is conducted. The results show the system original properties are satisfied after weaving aspects and all design flaws are revealed. As such, the approach can support web application design and analysis in an aspect-oriented fashion concisely and effectively.展开更多
Due to the shortcomings of the diagnosis systems for complex electronic devices such as failure models hard to build and low fault isolation resolution, a new hierarchical modeling and diagnosis method is proposed bas...Due to the shortcomings of the diagnosis systems for complex electronic devices such as failure models hard to build and low fault isolation resolution, a new hierarchical modeling and diagnosis method is proposed based on multisignal model and support vector machine (SVM). Multisignal model is used to describe the failure propagation relationship in electronic device system, and the most probable failure printed circuit boards (PCBs) can be found by Bayes inference. The exact failure modes in the PCBs can be identified by SVM. The results show the proposed modeling and diagnosis method is effective and suitable for diagnosis for complex electronic devices.展开更多
Massive rural-to-urban migration in China is consequential for political trust: rural-to-urban migrants have been found to hold lower levels of trust in local government than their rural peers who choose to stay in th...Massive rural-to-urban migration in China is consequential for political trust: rural-to-urban migrants have been found to hold lower levels of trust in local government than their rural peers who choose to stay in the countryside (mean 4.92 and 6.34 out of 10, respectively, p < 0.001). This article explores why migrants have a certain level of political trust in their county-level government. Using data of rural-to-urban migrants from the China Family Panel Survey, this study performs a hierarchical linear modeling (HLM) to unpack the multi-level explanatory factors of rural-to-urban migrants’ political trust. Findings show that the individual-level socio-economic characteristics and perceptions of government performance (Level-1), the neighborhood-level characteristics-the physical and social status and environment of neighborhoods (Level-2), and the objective macroeconomic performance of county-level government (Level-3), work together to explain migrants’ trust levels. These results suggest that considering the effects of neighborhood-level factors on rural-to-urban migrants’ political trust merits policy and public management attention in rapidly urbanizing countries.展开更多
Some ideas in the development of fault diagnosis system for spacecraft are introduced. Firstly, the architecture of spacecraft fault diagnosis is proposed hierarchically with four diagnosis frames, i.e., system level,...Some ideas in the development of fault diagnosis system for spacecraft are introduced. Firstly, the architecture of spacecraft fault diagnosis is proposed hierarchically with four diagnosis frames, i.e., system level, subsystem level, component level and element level. Secondly, a hierarchical diagnosis model is expressed with four layers, i.e., sensors layer, function layer, behavior layer and structure layer. These layers are used to work together to accomplish the fault alarm, diagnosis and localization. Thirdly, a fault-tree-oriented hybrid knowledge representation based on frame and generalized rule and its relevant reasoning strategy is put forward. Finally, a diagnosis case for spacecraft power system is exemplified combining the above with a powerful expert system development tool G2.展开更多
In order to implement the real-time detection of abnormality of elder and devices in an empty nest home,multi-modal joint sensors are used to collect discrete action sequences of behavior,and the improved hierarchical...In order to implement the real-time detection of abnormality of elder and devices in an empty nest home,multi-modal joint sensors are used to collect discrete action sequences of behavior,and the improved hierarchical hidden Markov model is adopted to Abstract these discrete action sequences captured by multi-modal joint sensors into an occupant’s high-level behavior—event,then structure representation models of occupant normality are modeled from large amounts of spatio-temporal data. These models are used as classifiers of normality to detect an occupant’s abnormal behavior.In order to express context information needed by reasoning and detection,multi-media ontology (MMO) is designed to annotate and reason about the media information in the smart monitoring system.A pessimistic emotion model (PEM) is improved to analyze multi-interleaving events of multi-active devices in the home.Experiments demonstrate that the PEM can enhance the accuracy and reliability for detecting active devices when these devices are in blind regions or are occlusive. The above approach has good performance in detecting abnormalities involving occupants and devices in a real-time way.展开更多
Due to pollution in second water supply system (SWSS),nine renovation alternative plans were proposed and com-prehensive evaluations of different plan based on Analytical Hierarchy Process (AHP) were presented in this...Due to pollution in second water supply system (SWSS),nine renovation alternative plans were proposed and com-prehensive evaluations of different plan based on Analytical Hierarchy Process (AHP) were presented in this paper. Comparisons of advantages and disadvantages among the plans of SWSS renovations provided solid foundation for selecting the most appro-priate plan for engineering projects. In addition,a mathematical model of the optimal combination of renovation plans has been set up and software Lingo was used to solve the model. As a case study,the paper analyzed 15 buildings in Tianjin City. After simulation of the SWSS renovation system,an optimal scheme was obtained,the result of which indicates that 10 out of those 15 buildings need be renovated in priority. The renovation plans selected for each building are the ones ranked higher in the com-prehensive analysis. The analysis revealed that the optimal scheme,compared with two other randomly calculated ones,increased the percentage of service population by 19.6% and 13.6% respectively,which significantly improved social and economical benefits.展开更多
As one of the top four commercially important species in China,yellow croaker(Larimichthys polyactis)with two geographic subpopulations,has undergone profound changes during the last several decades.It is widely compr...As one of the top four commercially important species in China,yellow croaker(Larimichthys polyactis)with two geographic subpopulations,has undergone profound changes during the last several decades.It is widely comprehended that understanding its population dynamics is critically important for sustainable management of this valuable fishery in China.The only two existing population dynamics models assessed the population of yellow croaker using short time-series data,without considering geographical variations.In this study,Bayesian models with and without hierarchical subpopulation structure were developed to explore the spatial heterogeneity of the population dynamics of yellow croaker from 1968 to 2015.Alternative hypotheses were constructed to test potential temporal patterns in yellow croaker’s population dynamics.Substantial variations in population dynamics characteristics among space and time were found through this study.The population growth rate was revealed to increase since the late 1980s,and the catchability increased more than twice from 1981 to 2015.The East China Sea’s subpopulation witnesses faster growth,but suffers from higher fishing pressure than that in the Bohai Sea and Yellow Sea.The global population and two subpopulations all have high risks of overfishing and being overfished according to the MSY-based reference points in recent years.More conservative management strategies with subpopulation considerations are imperative for the fishery management of yellow croaker in China.The methodology developed in this study could also be applied to the stock assessment and fishery management of other species,especially for those species with large spatial heterogeneity data.展开更多
Towards integration of supply chain, manufacturing/production and investment decision making, this paper presents a hierarchical model architecture which contains six sub-models covering the areas of manufacturing con...Towards integration of supply chain, manufacturing/production and investment decision making, this paper presents a hierarchical model architecture which contains six sub-models covering the areas of manufacturing control, production operation, design and revamp, production management, supply chain and investment decision making. Six types of flow, material, energy, information, humanware, partsware and capital are clasified. These flows connect enterprise components/subsystems to formulate system topology and logical structure. Enterprise components/subsystems are abstracted to generic elementary and composite classes. Finally, the model architecture is applied to a management system of an integrated suply chain, and suggestion are made on the usage of the model architecture and further development of the model as well as implementation issues.展开更多
Most existing agronomic trait models of winter wheat vary across growing seasons, and it is an open question whether a unified statistical model can be developed to predict agronomic traits using a vegetation index(VI...Most existing agronomic trait models of winter wheat vary across growing seasons, and it is an open question whether a unified statistical model can be developed to predict agronomic traits using a vegetation index(VI) across multiple growing seasons. In this study, we constructed a hierarchical linear model(HLM) to automatically adapt the relationship between VIs and agronomic traits across growing seasons and tested the model’s performance by sensitivity analysis. Results demonstrated that(1) optical VIs give poor performance in predicting AGB and PNC across all growth stages, whereas VIs perform well for LAI, LGB, LNC, and SPAD.(2) The sensitivity indices of the phenological information in the AGB and PNC prediction models were 0.81–0.86 and 0.66–0.73, whereas LAI, LGB, LNC, and SPAD prediction models produced sensitivity indexes of 0.01–0.02, 0.01–0.02, 0.01–0.02, and 0.02–0.08, respectively.(3) The AGB and PNC prediction models considering ZS were more accurate than the prediction models based on VI. Whether or not phenological information is used, there was no difference in model accuracy for LGB,LNC, SPAD, and LAI. This study may provide a guideline for deciding whether phenological correction is required for estimation of agronomic traits across multiple growing seasons.展开更多
In the hierarchical random effect linear model, the Bayes estimator of random parameter are not only dependent on specific prior distribution but also it is difficult to calculate in most cases. This paper derives the...In the hierarchical random effect linear model, the Bayes estimator of random parameter are not only dependent on specific prior distribution but also it is difficult to calculate in most cases. This paper derives the distributed-free optimal linear estimator of random parameters in the model by means of the credibility theory method. The estimators the authors derive can be applied in more extensive practical scenarios since they are only dependent on the first two moments of prior parameter rather than on specific prior distribution. Finally, the results are compared with some classical models and a numerical example is given to show the effectiveness of the estimators.展开更多
Online accurate recognition of target tactical intention in beyond-visual-range (BVR) air combat is an important basis for deep situational awareness and autonomous air combat decision-making, which can create pre-emp...Online accurate recognition of target tactical intention in beyond-visual-range (BVR) air combat is an important basis for deep situational awareness and autonomous air combat decision-making, which can create pre-emptive tactical opportunities for the fighter to gain air superiority. The existing methods to solve this problem have some defects such as dependence on empirical knowledge, difficulty in interpreting the recognition results, and inability to meet the requirements of actual air combat. So an online hierarchical recognition method for target tactical intention in BVR air combat based on cascaded support vector machine (CSVM) is proposed in this study. Through the mechanism analysis of BVR air combat, the instantaneous and cumulative feature information of target trajectory and relative situation information are introduced successively using online automatic decomposition of target trajectory and hierarchical progression. Then the hierarchical recognition model from target maneuver element, tactical maneuver to tactical intention is constructed. The CSVM algorithm is designed for solving this model, and the computational complexity is decomposed by the cascaded structure to overcome the problems of convergence and timeliness when the dimensions and number of training samples are large. Meanwhile, the recognition result of each layer can be used to support the composition analysis and interpretation of target tactical intention. The simulation results show that the proposed method can effectively realize multi-dimensional online accurate recognition of target tactical intention in BVR air combat.展开更多
Among complex network models,the hierarchical network model is the one most close to such real networks as world trade web,metabolic network,WWW,actor network,and so on.It has not only the property of power-law degree...Among complex network models,the hierarchical network model is the one most close to such real networks as world trade web,metabolic network,WWW,actor network,and so on.It has not only the property of power-law degree distribution,but also the scaling clustering coefficient property which Barabási-Albert(BA)model does not have.BA model is a model of network growth based on growth and preferential attachment,showing the scale-free degree distribution property.In this paper,we study the evolution of cooperation on a hierarchical network model,adopting the prisoner's dilemma(PD)game and snowdrift game(SG)as metaphors of the interplay between connected nodes.BA model provides a unifying framework for the emergence of cooperation.But interestingly,we found that on hierarchical model,there is no sign of cooperation for PD game,while the fre-quency of cooperation decreases as the common benefit decreases for SG.By comparing the scaling clustering coefficient prop-erties of the hierarchical network model with that of BA model,we found that the former amplifies the effect of hubs.Considering different performances of PD game and SG on complex network,we also found that common benefit leads to cooperation in the evolution.Thus our study may shed light on the emergence of cooperation in both natural and social environments.展开更多
This paper presents an anomaly detection approach to detect intrusions into computer systems. In this approach, a hierarchical hidden Markov model (HHMM) is used to represent a temporal profile of normal behavior in...This paper presents an anomaly detection approach to detect intrusions into computer systems. In this approach, a hierarchical hidden Markov model (HHMM) is used to represent a temporal profile of normal behavior in a computer system. The HHMM of the norm profile is learned from historic data of the system's normal behavior. The observed behavior of the system is analyzed to infer the probability that the HHMM of the norm profile supports the observed behavior. A low probability of support indicates an anomalous behavior that may result from intrusive activities. The model was implemented and tested on the UNIX system call sequences collected by the University of New Mexico group. The testing results showed that the model can clearly identify the anomaly activities and has a better performance than hidden Markov model.展开更多
This study developed a hierarchical Bayesian(HB)model for local and regional flood frequency analysis in the Dongting Lake Basin,in China.The annual maximum daily flows from 15 streamflow-gauged sites in the study are...This study developed a hierarchical Bayesian(HB)model for local and regional flood frequency analysis in the Dongting Lake Basin,in China.The annual maximum daily flows from 15 streamflow-gauged sites in the study area were analyzed with the HB model.The generalized extreme value(GEV)distribution was selected as the extreme flood distribution,and the GEV distribution location and scale parameters were spatially modeled through a regression approach with the drainage area as a covariate.The Markov chain Monte Carlo(MCMC)method with Gibbs sampling was employed to calculate the posterior distribution in the HB model.The results showed that the proposed HB model provided satisfactory Bayesian credible intervals for flood quantiles,while the traditional delta method could not provide reliable uncertainty estimations for large flood quantiles,due to the fact that the lower confidence bounds tended to decrease as the return periods increased.Furthermore,the HB model for regional analysis allowed for a reduction in the value of some restrictive assumptions in the traditional index flood method,such as the homogeneity region assumption and the scale invariance assumption.The HB model can also provide an uncertainty band of flood quantile prediction at a poorly gauged or ungauged site,but the index flood method with L-moments does not demonstrate this uncertainty directly.Therefore,the HB model is an effective method of implementing the flexible local and regional frequency analysis scheme,and of quantifying the associated predictive uncertainty.展开更多
The systematic analysis of the hierarchical relationship among the factors affecting the sustainable supply chain implementation of water diversion projects has theoretical value and practical significance for the sus...The systematic analysis of the hierarchical relationship among the factors affecting the sustainable supply chain implementation of water diversion projects has theoretical value and practical significance for the sustainable development of large-scale water diversion projects. Through the investigation of relevant literature, books, web pages, materials, and discussions with relevant experts and scholars, a total of 23 factors influencing the sustainable supply chain implementation of water diversion projects were identified. Then using ISM (Interpretative Structural Modeling Method) to analyze the causality of each factor, a multi-level hierarchical structure model was obtained. The results showed that: 1) The surface-level influencing factors of the sustaina<span>ble supply chain implementation of the water diversion project mainly i</span>ncluded 8 factors such as water-saving awareness and water-saving intensity in the diversion area, water quality, water pollution and other disasters, effective incentive mechanisms, etc., and surface-level influencing factors were directly related to the sustainable supply chain implementation of water diversio<span>n projects. 2) The indirect influencing factors of the sustainable supply chai</span>n of water diversion projects included 12 factors such as the water quality and quantity guarantee rate of the supply chain, the government’s enforcement of laws and regulations, water distribution, ecological compensation, and compensatio<span>n mechanisms for residents in the water source area. Indirect influencing</span> factor scan acts directly on the direct influencing factors, and int<span>ervening in the factors that can be controlled by humans is one of the important ways to improve the sustainable operation of water diversion proj</span><span>e</span><span>cts. 3) T</span><span>he fundamental influencing factors for the sustainable supply chain implementation of water diversion projects included three f</span>actors: Resettlement policy, government financial support, and sound laws and regulations. Deep influencing factors had multi-channel influence and controllability, and intervening in them was the main means to improve the sustainable operation of water diversion projects.展开更多
Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) a...Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) and remote sensing imagery, combined with developed object-based methods enables automatic gully feature mapping. But still few studies have specifically focused on gully feature mapping on different scales. In this study, an object-based approach to two-level gully feature mapping, including gully-affected areas and bank gullies, was developed and tested on 1-m DEM and Worldview-3 imagery of a catchment in the Chinese Loess Plateau. The methodology includes a sequence of data preparation, image segmentation, metric calculation, and random forest based classification. The results of the two-level mapping were based on a random forest model after investigating the effects of feature selection and class-imbalance problem. Results show that the segmentation strategy adopted in this paper which considers the topographic information and optimal parameter combination can improve the segmentation results. The distribution of the gully-affected area is closely related to topographic information, however, the spectral features are more dominant for bank gully mapping. The highest overall accuracy of the gully-affected area mapping was 93.06% with four topographic features. The highest overall accuracy of bank gully mapping is 78.5% when all features are adopted. The proposed approach is a creditable option for hierarchical mapping of gully feature information, which is suitable for the application in hily Loess Plateau region.展开更多
3D and 2D closed form plate models are here applied to static analysis of simply supported square isotropic plates. 2D theories are hierarchically classified on the basis of the accuracy of the displacements and stres...3D and 2D closed form plate models are here applied to static analysis of simply supported square isotropic plates. 2D theories are hierarchically classified on the basis of the accuracy of the displacements and stresses obtained by comparison to the 3D exact results that could be assumed by the reader as benchmark for further analyses. Attention is mainly paid on localized loading conditions, that is, piecewise constant load. Also bi-sinusoidal and uniformly distributed loadings are taken into account. All of those configurations are considered in order to investigate the behavior of the 2D models in the case of continu- ous/uncontinuous, centric or off-centric loading conditions. The ratio between the side length a and the plate thickness h has been assumed as analysis parameter. Higher order 2D models yield accurate results for any considered load condition in the case of moderately thick plates, a/h=10. In the case of thick plates, a/h=5, and continuous/uncontinuous centric loading conditions high accuracy is also obtained. For the considered off-centric load condition and thick plates good results are provided for some output quantities. A better solution could be achieved by simply increasing the polynomial approximation order of the axiomatic 2D displacement field.展开更多
Identifying the causal impact of' some intervention challenging when one is faced with correlated binary end-points in observational studies is a challenging task, and it is even more The statistical literature on an...Identifying the causal impact of' some intervention challenging when one is faced with correlated binary end-points in observational studies is a challenging task, and it is even more The statistical literature on analyzing such data is well documented. Dependence between observations from the same study subject in correlated data renders invalid the usual chi-square tests of independence and inflates the variance ofparameter estimates. Disaggregated approaches such as hierarchical linear models which are able to adjust for individual level covariate:s are favoured in the analysis of such data, thereby gaining power over aggregated and individual-level analyses. In this article the authors, therefore, address the issue of analyzing correlated data with dichotomous end-points by using hierarchical logistic regression, a generalization of the standard logistic regression model for independent outcomes.展开更多
基金the financial support from The National Key Research and Development Program of China(2022YFB3305402)The National Natural Science Foundation of China(12272072)+1 种基金The Key Project of Chongqing Technology Innovation and Application Development(CSTB2022TIAD-KPX0037)Research Project of the State Key Laboratory of Intel igent Vehicle Safety Technology(NVHSKL-202207)
文摘The accurate representation of lithium plating and aging phenomena has posed a persistent challenge within the battery research community.Empirical evidence underscores the pivotal role of cell structure in influencing aging behaviors and lithium plating within lithium-ion batteries(LIBs).Available lithium-ion plating models often falter in detailed description when integrating the structural intricacies.To address this challenge,this study proposes an innovative hierarchical model that intricately incorporates the layered rolling structure in cells.Notably,our model demonstrates a remarkable capacity to predict the non-uniform distribution of current density and overpotential along the rolling direction of LIBs.Subsequently,we delve into an insightful exploration of the structural factors that influence lithium plating behavior,leveraging the foundation laid by our established model.Furthermore,we easily update the hierarchical model by considering aging factors.This aging model effectively anticipates capacity fatigue and lithium plating tendencies across individual layers of LIBs,all while maintaining computational efficiency.In light of our findings,this model yields novel perspectives on capacity fatigue dynamics and local lithium plating behaviors,offering a substantial advancement compared to existing models.This research paves the way for more efficient and tailored LIB design and operation,with broad implications for energy storage technologies.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2023A1515011244).
文摘The state of in situ stress is a crucial parameter in subsurface engineering,especially for critical projects like nuclear waste repository.As one of the two ISRM suggested methods,the overcoring(OC)method is widely used to estimate the full stress tensors in rocks by independent regression analysis of the data from each OC test.However,such customary independent analysis of individual OC tests,known as no pooling,is liable to yield unreliable test-specific stress estimates due to various uncertainty sources involved in the OC method.To address this problem,a practical and no-cost solution is considered by incorporating into OC data analysis additional information implied within adjacent OC tests,which are usually available in OC measurement campaigns.Hence,this paper presents a Bayesian partial pooling(hierarchical)model for combined analysis of adjacent OC tests.We performed five case studies using OC test data made at a nuclear waste repository research site of Sweden.The results demonstrate that partial pooling of adjacent OC tests indeed allows borrowing of information across adjacent tests,and yields improved stress tensor estimates with reduced uncertainties simultaneously for all individual tests than they are independently analysed as no pooling,particularly for those unreliable no pooling stress estimates.A further model comparison shows that the partial pooling model also gives better predictive performance,and thus confirms that the information borrowed across adjacent OC tests is relevant and effective.
基金supported by the NSF of China under grants No. 61173048 and No. 61300041Specialized Research Fund for the Doctoral Program of Higher Education under grant No. 20130074110015+2 种基金the Fundamental Research Funds for the Central Universities under Grant No.WH1314038the Humanities and Social Science Research Planning Fund of the Education Ministry of China under grant No.15YJCZH201the Research Innovation Program of Shanghai Municipal Education Commission under grant No. 14YZ134
文摘Aspect-oriented modeling can uncover potential design faults, yet most existing work fails to achieve both separation and composition in a natural and succinct way. This study presents an aspect-oriented modeling and analysis approach with hierarchical Coloured Petri Nets(HCPN). HCPN has sub-models and well-defined semantics combining a set of submodels. These two characteristics of HCPN are nicely integrated into aspect oriented modeling. Submodels are used to model aspects while the combination mechanism contributes to aspects weaving. Furthermore, the woven aspect oriented HCPN model can be simulated and analyzed by the CPN Tools. A systematic web application case study is conducted. The results show the system original properties are satisfied after weaving aspects and all design flaws are revealed. As such, the approach can support web application design and analysis in an aspect-oriented fashion concisely and effectively.
基金supported by the Defense Foundation Scientific Research Fund under Grant No.9140A17030308DZ02,9140A16060409DZ02the National Natural Science Fundation of Chinaunder Grant No.60934002Dr.Lianke for the extensive discussions on the subject and UESTC for its support under Grant No.JX0756,Y02018023601059
文摘Due to the shortcomings of the diagnosis systems for complex electronic devices such as failure models hard to build and low fault isolation resolution, a new hierarchical modeling and diagnosis method is proposed based on multisignal model and support vector machine (SVM). Multisignal model is used to describe the failure propagation relationship in electronic device system, and the most probable failure printed circuit boards (PCBs) can be found by Bayes inference. The exact failure modes in the PCBs can be identified by SVM. The results show the proposed modeling and diagnosis method is effective and suitable for diagnosis for complex electronic devices.
文摘Massive rural-to-urban migration in China is consequential for political trust: rural-to-urban migrants have been found to hold lower levels of trust in local government than their rural peers who choose to stay in the countryside (mean 4.92 and 6.34 out of 10, respectively, p < 0.001). This article explores why migrants have a certain level of political trust in their county-level government. Using data of rural-to-urban migrants from the China Family Panel Survey, this study performs a hierarchical linear modeling (HLM) to unpack the multi-level explanatory factors of rural-to-urban migrants’ political trust. Findings show that the individual-level socio-economic characteristics and perceptions of government performance (Level-1), the neighborhood-level characteristics-the physical and social status and environment of neighborhoods (Level-2), and the objective macroeconomic performance of county-level government (Level-3), work together to explain migrants’ trust levels. These results suggest that considering the effects of neighborhood-level factors on rural-to-urban migrants’ political trust merits policy and public management attention in rapidly urbanizing countries.
文摘Some ideas in the development of fault diagnosis system for spacecraft are introduced. Firstly, the architecture of spacecraft fault diagnosis is proposed hierarchically with four diagnosis frames, i.e., system level, subsystem level, component level and element level. Secondly, a hierarchical diagnosis model is expressed with four layers, i.e., sensors layer, function layer, behavior layer and structure layer. These layers are used to work together to accomplish the fault alarm, diagnosis and localization. Thirdly, a fault-tree-oriented hybrid knowledge representation based on frame and generalized rule and its relevant reasoning strategy is put forward. Finally, a diagnosis case for spacecraft power system is exemplified combining the above with a powerful expert system development tool G2.
基金The National Natural Science Foundation of China(No.60773110)the Youth Education Fund of Hunan Province(No.07B014)
文摘In order to implement the real-time detection of abnormality of elder and devices in an empty nest home,multi-modal joint sensors are used to collect discrete action sequences of behavior,and the improved hierarchical hidden Markov model is adopted to Abstract these discrete action sequences captured by multi-modal joint sensors into an occupant’s high-level behavior—event,then structure representation models of occupant normality are modeled from large amounts of spatio-temporal data. These models are used as classifiers of normality to detect an occupant’s abnormal behavior.In order to express context information needed by reasoning and detection,multi-media ontology (MMO) is designed to annotate and reason about the media information in the smart monitoring system.A pessimistic emotion model (PEM) is improved to analyze multi-interleaving events of multi-active devices in the home.Experiments demonstrate that the PEM can enhance the accuracy and reliability for detecting active devices when these devices are in blind regions or are occlusive. The above approach has good performance in detecting abnormalities involving occupants and devices in a real-time way.
基金Project (No.033113111) supported by Tianjin Science Association Key Project,China
文摘Due to pollution in second water supply system (SWSS),nine renovation alternative plans were proposed and com-prehensive evaluations of different plan based on Analytical Hierarchy Process (AHP) were presented in this paper. Comparisons of advantages and disadvantages among the plans of SWSS renovations provided solid foundation for selecting the most appro-priate plan for engineering projects. In addition,a mathematical model of the optimal combination of renovation plans has been set up and software Lingo was used to solve the model. As a case study,the paper analyzed 15 buildings in Tianjin City. After simulation of the SWSS renovation system,an optimal scheme was obtained,the result of which indicates that 10 out of those 15 buildings need be renovated in priority. The renovation plans selected for each building are the ones ranked higher in the com-prehensive analysis. The analysis revealed that the optimal scheme,compared with two other randomly calculated ones,increased the percentage of service population by 19.6% and 13.6% respectively,which significantly improved social and economical benefits.
基金Foundation item:The National Key R&D Program of China under contract No.2017YFE0104400the National Natural Science Foundation of China under contract No.31772852the Fundamental Research Funds for the Central Universities under contract Nos 201512002 and 201562030.
文摘As one of the top four commercially important species in China,yellow croaker(Larimichthys polyactis)with two geographic subpopulations,has undergone profound changes during the last several decades.It is widely comprehended that understanding its population dynamics is critically important for sustainable management of this valuable fishery in China.The only two existing population dynamics models assessed the population of yellow croaker using short time-series data,without considering geographical variations.In this study,Bayesian models with and without hierarchical subpopulation structure were developed to explore the spatial heterogeneity of the population dynamics of yellow croaker from 1968 to 2015.Alternative hypotheses were constructed to test potential temporal patterns in yellow croaker’s population dynamics.Substantial variations in population dynamics characteristics among space and time were found through this study.The population growth rate was revealed to increase since the late 1980s,and the catchability increased more than twice from 1981 to 2015.The East China Sea’s subpopulation witnesses faster growth,but suffers from higher fishing pressure than that in the Bohai Sea and Yellow Sea.The global population and two subpopulations all have high risks of overfishing and being overfished according to the MSY-based reference points in recent years.More conservative management strategies with subpopulation considerations are imperative for the fishery management of yellow croaker in China.The methodology developed in this study could also be applied to the stock assessment and fishery management of other species,especially for those species with large spatial heterogeneity data.
基金Supported by the National Natural Science Foundation of China (No. 79931000) and The State Major Basic Research Development Program (No. G20000263).
文摘Towards integration of supply chain, manufacturing/production and investment decision making, this paper presents a hierarchical model architecture which contains six sub-models covering the areas of manufacturing control, production operation, design and revamp, production management, supply chain and investment decision making. Six types of flow, material, energy, information, humanware, partsware and capital are clasified. These flows connect enterprise components/subsystems to formulate system topology and logical structure. Enterprise components/subsystems are abstracted to generic elementary and composite classes. Finally, the model architecture is applied to a management system of an integrated suply chain, and suggestion are made on the usage of the model architecture and further development of the model as well as implementation issues.
基金supported by the National Key Research and Development Program of China (2019YFE0125300)the Shandong Provincial Key R&D Plan (2021LZGC026)the China Agriculture Research System (CARS-03)。
文摘Most existing agronomic trait models of winter wheat vary across growing seasons, and it is an open question whether a unified statistical model can be developed to predict agronomic traits using a vegetation index(VI) across multiple growing seasons. In this study, we constructed a hierarchical linear model(HLM) to automatically adapt the relationship between VIs and agronomic traits across growing seasons and tested the model’s performance by sensitivity analysis. Results demonstrated that(1) optical VIs give poor performance in predicting AGB and PNC across all growth stages, whereas VIs perform well for LAI, LGB, LNC, and SPAD.(2) The sensitivity indices of the phenological information in the AGB and PNC prediction models were 0.81–0.86 and 0.66–0.73, whereas LAI, LGB, LNC, and SPAD prediction models produced sensitivity indexes of 0.01–0.02, 0.01–0.02, 0.01–0.02, and 0.02–0.08, respectively.(3) The AGB and PNC prediction models considering ZS were more accurate than the prediction models based on VI. Whether or not phenological information is used, there was no difference in model accuracy for LGB,LNC, SPAD, and LAI. This study may provide a guideline for deciding whether phenological correction is required for estimation of agronomic traits across multiple growing seasons.
基金supported by the National Science Foundation of China under Grant Nos.71361015,71340010,71371074the Jiangxi Provincial Natural Science Foundation under Grant No.20142BAB201013+2 种基金China Postdoctoral Science Foundation under Grant No.2013M540534China Postdoctoral Fund special Project under Grant No.2014T70615Jiangxi Postdoctoral Science Foundation under Grant No.2013KY53
文摘In the hierarchical random effect linear model, the Bayes estimator of random parameter are not only dependent on specific prior distribution but also it is difficult to calculate in most cases. This paper derives the distributed-free optimal linear estimator of random parameters in the model by means of the credibility theory method. The estimators the authors derive can be applied in more extensive practical scenarios since they are only dependent on the first two moments of prior parameter rather than on specific prior distribution. Finally, the results are compared with some classical models and a numerical example is given to show the effectiveness of the estimators.
基金The authors gratefully acknowledge the support of the National Natural Science Foundation of China under Grant No.62076204 and Grant No.61612385in part by the Postdoctoral Science Foundation of China under Grants No.2021M700337in part by the Fundamental Research Funds for the Central Universities under Grant No.3102019ZX016.
文摘Online accurate recognition of target tactical intention in beyond-visual-range (BVR) air combat is an important basis for deep situational awareness and autonomous air combat decision-making, which can create pre-emptive tactical opportunities for the fighter to gain air superiority. The existing methods to solve this problem have some defects such as dependence on empirical knowledge, difficulty in interpreting the recognition results, and inability to meet the requirements of actual air combat. So an online hierarchical recognition method for target tactical intention in BVR air combat based on cascaded support vector machine (CSVM) is proposed in this study. Through the mechanism analysis of BVR air combat, the instantaneous and cumulative feature information of target trajectory and relative situation information are introduced successively using online automatic decomposition of target trajectory and hierarchical progression. Then the hierarchical recognition model from target maneuver element, tactical maneuver to tactical intention is constructed. The CSVM algorithm is designed for solving this model, and the computational complexity is decomposed by the cascaded structure to overcome the problems of convergence and timeliness when the dimensions and number of training samples are large. Meanwhile, the recognition result of each layer can be used to support the composition analysis and interpretation of target tactical intention. The simulation results show that the proposed method can effectively realize multi-dimensional online accurate recognition of target tactical intention in BVR air combat.
基金Project supported by the Natural Science Foundation of ZhejiangProvince, China (No. Y105697)the Ningbo Natural ScienceFoundation,China (No. 2005A610004)
文摘Among complex network models,the hierarchical network model is the one most close to such real networks as world trade web,metabolic network,WWW,actor network,and so on.It has not only the property of power-law degree distribution,but also the scaling clustering coefficient property which Barabási-Albert(BA)model does not have.BA model is a model of network growth based on growth and preferential attachment,showing the scale-free degree distribution property.In this paper,we study the evolution of cooperation on a hierarchical network model,adopting the prisoner's dilemma(PD)game and snowdrift game(SG)as metaphors of the interplay between connected nodes.BA model provides a unifying framework for the emergence of cooperation.But interestingly,we found that on hierarchical model,there is no sign of cooperation for PD game,while the fre-quency of cooperation decreases as the common benefit decreases for SG.By comparing the scaling clustering coefficient prop-erties of the hierarchical network model with that of BA model,we found that the former amplifies the effect of hubs.Considering different performances of PD game and SG on complex network,we also found that common benefit leads to cooperation in the evolution.Thus our study may shed light on the emergence of cooperation in both natural and social environments.
基金Supported by the Science and Technology Development Project Foundation of Tianjin (033800611, 05YFGZGX24200)
文摘This paper presents an anomaly detection approach to detect intrusions into computer systems. In this approach, a hierarchical hidden Markov model (HHMM) is used to represent a temporal profile of normal behavior in a computer system. The HHMM of the norm profile is learned from historic data of the system's normal behavior. The observed behavior of the system is analyzed to infer the probability that the HHMM of the norm profile supports the observed behavior. A low probability of support indicates an anomalous behavior that may result from intrusive activities. The model was implemented and tested on the UNIX system call sequences collected by the University of New Mexico group. The testing results showed that the model can clearly identify the anomaly activities and has a better performance than hidden Markov model.
基金supported by the National Natural Science Foundation of China(Grants No.51779074 and 41371052)the Special Fund for the Public Welfare Industry of the Ministry of Water Resources of China(Grant No.201501059)+3 种基金the National Key Research and Development Program of China(Grant No.2017YFC0404304)the Jiangsu Water Conservancy Science and Technology Project(Grant No.2017027)the Program for Outstanding Young Talents in Colleges and Universities of Anhui Province(Grant No.gxyq2018143)the Natural Science Foundation of Wanjiang University of Technology(Grant No.WG18030)
文摘This study developed a hierarchical Bayesian(HB)model for local and regional flood frequency analysis in the Dongting Lake Basin,in China.The annual maximum daily flows from 15 streamflow-gauged sites in the study area were analyzed with the HB model.The generalized extreme value(GEV)distribution was selected as the extreme flood distribution,and the GEV distribution location and scale parameters were spatially modeled through a regression approach with the drainage area as a covariate.The Markov chain Monte Carlo(MCMC)method with Gibbs sampling was employed to calculate the posterior distribution in the HB model.The results showed that the proposed HB model provided satisfactory Bayesian credible intervals for flood quantiles,while the traditional delta method could not provide reliable uncertainty estimations for large flood quantiles,due to the fact that the lower confidence bounds tended to decrease as the return periods increased.Furthermore,the HB model for regional analysis allowed for a reduction in the value of some restrictive assumptions in the traditional index flood method,such as the homogeneity region assumption and the scale invariance assumption.The HB model can also provide an uncertainty band of flood quantile prediction at a poorly gauged or ungauged site,but the index flood method with L-moments does not demonstrate this uncertainty directly.Therefore,the HB model is an effective method of implementing the flexible local and regional frequency analysis scheme,and of quantifying the associated predictive uncertainty.
文摘The systematic analysis of the hierarchical relationship among the factors affecting the sustainable supply chain implementation of water diversion projects has theoretical value and practical significance for the sustainable development of large-scale water diversion projects. Through the investigation of relevant literature, books, web pages, materials, and discussions with relevant experts and scholars, a total of 23 factors influencing the sustainable supply chain implementation of water diversion projects were identified. Then using ISM (Interpretative Structural Modeling Method) to analyze the causality of each factor, a multi-level hierarchical structure model was obtained. The results showed that: 1) The surface-level influencing factors of the sustaina<span>ble supply chain implementation of the water diversion project mainly i</span>ncluded 8 factors such as water-saving awareness and water-saving intensity in the diversion area, water quality, water pollution and other disasters, effective incentive mechanisms, etc., and surface-level influencing factors were directly related to the sustainable supply chain implementation of water diversio<span>n projects. 2) The indirect influencing factors of the sustainable supply chai</span>n of water diversion projects included 12 factors such as the water quality and quantity guarantee rate of the supply chain, the government’s enforcement of laws and regulations, water distribution, ecological compensation, and compensatio<span>n mechanisms for residents in the water source area. Indirect influencing</span> factor scan acts directly on the direct influencing factors, and int<span>ervening in the factors that can be controlled by humans is one of the important ways to improve the sustainable operation of water diversion proj</span><span>e</span><span>cts. 3) T</span><span>he fundamental influencing factors for the sustainable supply chain implementation of water diversion projects included three f</span>actors: Resettlement policy, government financial support, and sound laws and regulations. Deep influencing factors had multi-channel influence and controllability, and intervening in them was the main means to improve the sustainable operation of water diversion projects.
基金Under the auspices of Priority Academic Program Development of Jiangsu Higher Education Institutions,National Natural Science Foundation of China(No.41271438,41471316,41401440,41671389)
文摘Gully feature mapping is an indispensable prerequisite for the motioning and control of gully erosion which is a widespread natural hazard. The increasing availability of high-resolution Digital Elevation Model(DEM) and remote sensing imagery, combined with developed object-based methods enables automatic gully feature mapping. But still few studies have specifically focused on gully feature mapping on different scales. In this study, an object-based approach to two-level gully feature mapping, including gully-affected areas and bank gullies, was developed and tested on 1-m DEM and Worldview-3 imagery of a catchment in the Chinese Loess Plateau. The methodology includes a sequence of data preparation, image segmentation, metric calculation, and random forest based classification. The results of the two-level mapping were based on a random forest model after investigating the effects of feature selection and class-imbalance problem. Results show that the segmentation strategy adopted in this paper which considers the topographic information and optimal parameter combination can improve the segmentation results. The distribution of the gully-affected area is closely related to topographic information, however, the spectral features are more dominant for bank gully mapping. The highest overall accuracy of the gully-affected area mapping was 93.06% with four topographic features. The highest overall accuracy of bank gully mapping is 78.5% when all features are adopted. The proposed approach is a creditable option for hierarchical mapping of gully feature information, which is suitable for the application in hily Loess Plateau region.
文摘3D and 2D closed form plate models are here applied to static analysis of simply supported square isotropic plates. 2D theories are hierarchically classified on the basis of the accuracy of the displacements and stresses obtained by comparison to the 3D exact results that could be assumed by the reader as benchmark for further analyses. Attention is mainly paid on localized loading conditions, that is, piecewise constant load. Also bi-sinusoidal and uniformly distributed loadings are taken into account. All of those configurations are considered in order to investigate the behavior of the 2D models in the case of continu- ous/uncontinuous, centric or off-centric loading conditions. The ratio between the side length a and the plate thickness h has been assumed as analysis parameter. Higher order 2D models yield accurate results for any considered load condition in the case of moderately thick plates, a/h=10. In the case of thick plates, a/h=5, and continuous/uncontinuous centric loading conditions high accuracy is also obtained. For the considered off-centric load condition and thick plates good results are provided for some output quantities. A better solution could be achieved by simply increasing the polynomial approximation order of the axiomatic 2D displacement field.
文摘Identifying the causal impact of' some intervention challenging when one is faced with correlated binary end-points in observational studies is a challenging task, and it is even more The statistical literature on analyzing such data is well documented. Dependence between observations from the same study subject in correlated data renders invalid the usual chi-square tests of independence and inflates the variance ofparameter estimates. Disaggregated approaches such as hierarchical linear models which are able to adjust for individual level covariate:s are favoured in the analysis of such data, thereby gaining power over aggregated and individual-level analyses. In this article the authors, therefore, address the issue of analyzing correlated data with dichotomous end-points by using hierarchical logistic regression, a generalization of the standard logistic regression model for independent outcomes.