Towards integration of supply chain, manufacturing/production and investment decision making, this paper presents a hierarchical model architecture which contains six sub-models covering the areas of manufacturing con...Towards integration of supply chain, manufacturing/production and investment decision making, this paper presents a hierarchical model architecture which contains six sub-models covering the areas of manufacturing control, production operation, design and revamp, production management, supply chain and investment decision making. Six types of flow, material, energy, information, humanware, partsware and capital are clasified. These flows connect enterprise components/subsystems to formulate system topology and logical structure. Enterprise components/subsystems are abstracted to generic elementary and composite classes. Finally, the model architecture is applied to a management system of an integrated suply chain, and suggestion are made on the usage of the model architecture and further development of the model as well as implementation issues.展开更多
Digital libraries are complex systems and this brings difficulties for their evaluation. This paper proposes a hierarchical model to solve this problem, and puts the entangled matters into a clear-layered structure. F...Digital libraries are complex systems and this brings difficulties for their evaluation. This paper proposes a hierarchical model to solve this problem, and puts the entangled matters into a clear-layered structure. Firstly, digital libraries(DLs thereafter)are classified into 5 groups in ascending gradations, i.e. mini DLs, small DLs, medium DLs,large DLs, and huge DLs by their scope of operation. Then, according to the characteristics of DLs at different operational scope and level of sophistication, they are further grouped into unitary DLs, union DLs and hybrid DLs accordingly. Based on this simulated structure,a hierarchical model for digital library evaluation is introduced, which evaluates DLs differentiatingly within a hierarchical scheme by using varying criteria based on their specific level of operational complexity such as at the micro-level, medium-level, and/or at the macro-level. Based on our careful examination and analysis of the current literature about DL evaluation system, an experiment is conducted by using the DL evaluation model along with its criteria for unitary DLs at micro-level. The main contents resulting from this evaluation experimentation and also those evaluation indicators and relevant issues of major concerns for DLs at medium-level and macro-level are also to be presented at some length.展开更多
Computational complexity of complex system multiple fault diagnosis is a puzzle at all times. Based on the well known Mozetic's approach, a novel hierarchical model-based diagnosis methodology is put forward for impr...Computational complexity of complex system multiple fault diagnosis is a puzzle at all times. Based on the well known Mozetic's approach, a novel hierarchical model-based diagnosis methodology is put forward for improving efficency of multi-fault recognition and localization. Structural abstraction and weighted fault propagation graphs are combined to build diagnosis model. The graphs have weighted arcs with fault propagation probabilities and propagation strength. For solving the problem of coupled faults, two diagnosis strategies are used: one is the Lagrangian relaxation and the primal heuristic algorithms; another is the method of propagation strength. Finally, an applied example shows the applicability of the approach and experimental results are given to show the superiority of the presented technique.展开更多
Due to the shortcomings of the diagnosis systems for complex electronic devices such as failure models hard to build and low fault isolation resolution, a new hierarchical modeling and diagnosis method is proposed bas...Due to the shortcomings of the diagnosis systems for complex electronic devices such as failure models hard to build and low fault isolation resolution, a new hierarchical modeling and diagnosis method is proposed based on multisignal model and support vector machine (SVM). Multisignal model is used to describe the failure propagation relationship in electronic device system, and the most probable failure printed circuit boards (PCBs) can be found by Bayes inference. The exact failure modes in the PCBs can be identified by SVM. The results show the proposed modeling and diagnosis method is effective and suitable for diagnosis for complex electronic devices.展开更多
The annual passenger volume of airport reflected its passenger transport scale and the role in aviation network.The airports in whole country were divided into three layers:first layer airports,second layer airports a...The annual passenger volume of airport reflected its passenger transport scale and the role in aviation network.The airports in whole country were divided into three layers:first layer airports,second layer airports and third layer airports.The airlines from the first layer airports consisted the first layer aviation network.The airlines from the second layer airports consisted the second layer aviation network.The airlines from the third layer airports consisted the third layer aviation network.The structure and function of different layer aviation network had significant differences.These differences were shown in the number of airlines,average number of airlines of each airport,annual passenger volume of airport and average passenger volume of each airline.National aviation network hierarchical model was constructed to describe the whole country aviation network.The matrix was built to describe the airline number,annual passenger volume,average number of airlines,average passenger volume of each airport and airline rate of aviation network.The index of national aviation network structure was constructed to show the ratio of index between different aviation network layer to describe the aviation network structure.The structure index was built to illustrate the macrostructural features of national aviation network.The statistics data in year 1988,1994,2001,2008 and 2015 of China aviation network were analyzed and basic data matrixes,basic index matrixes and structure index matrixes were calculated.The trend of ratio of corresponding index between the first layer and the second layer showed the change of basic structure of China aviation network.At meantime,the tendency of ratio of corresponding index between the third layer and the second layer also showed the change of basic structure.The trend of network general structure index illustrated that the large scaled new airports and airlines construction had significant influence on the national aviation network structure.展开更多
Ore sorting is a preconcentration technology and can dramatically reduce energy and water usage to improve the sustainability and profitability of a mining operation.In porphyry Cu deposits,Cu is the primary target,wi...Ore sorting is a preconcentration technology and can dramatically reduce energy and water usage to improve the sustainability and profitability of a mining operation.In porphyry Cu deposits,Cu is the primary target,with ores usually containing secondary‘pay’metals such as Au,Mo and gangue elements such as Fe and As.Due to sensing technology limitations,secondary and deleterious materials vary in correlation type and strength with Cu but cannot be detected simultaneously via magnetic resonance(MR)ore sorting.Inferring the relationships between Cu and other elemental abundances is particularly critical for mineral processing.The variations in metal grade relationships occur due to the transition into different geological domains.This raises two questions-how to define these geological domains and how the metal grade relationship is influenced by these geological domains.In this paper,linear relationship is assumed between Cu grade and other metal grades.We applies a Bayesian hierarchical(partial-pooling)model to quantify the linear relationships between Cu,Au,and Fe grades from geochemical bore core data.The hierarchical model was compared with two other models-‘complete-pooling’model and‘nopooling’model.Mining blocks were split based on spatial domain to construct hierarchical model.Geochemical bore core data records metal grades measured from laboratory assay with spatial coordinates of sample location.Two case studies from different porphyry Cu deposits were used to evaluate the performance of the hierarchical model.Markov chain Monte Carlo(MCMC)was used to sample the posterior parameters.Our results show that the Bayesian hierarchical model dramatically reduced the posterior predictive variance for metal grades regression compared to the no-pooling model.In addition,the posterior inference in the hierarchical model is insensitive to the choice of prior.The data is wellrepresented in the posterior which indicates a robust model.The results show that the spatial domain can be successfully utilised for metal grade regression.Uncertainty in estimating the relationship between pay metals and both secondary and gangue elements is quantified and shown to be reduced with partial-pooling.Thus,the proposed Bayesian hierarchical model can offer a reliable and stable way to monitor the relationship between metal grades for ore sorting and other mineral processing options.展开更多
Identification of attacks by a network intrusion detection system (NIDS) is an important task. In signature or rule based detection, the previously encountered attacks are modded, and signatures/rules are extracted....Identification of attacks by a network intrusion detection system (NIDS) is an important task. In signature or rule based detection, the previously encountered attacks are modded, and signatures/rules are extracted. These rules are used to detect such attacks in future, but in anomaly or outlier detection system, the normal network traffic is modeled. Any deviation from the normal model is deemed to be an outlier/attack. Data mining and machine learning techniques are widely used in offline NIDS. Unsupervised and supervised learning techniques differ the way NIDS dataset is treated. The characteristic features of unsupervised and supervised learning are finding patterns in data, detecting outliers, and determining a learned function for input features, generalizing the data instances respectively. The intuition is that if these two techniques are combined, better performance may be obtained. Hence, in this paper the advantages of unsupervised and supervised techniques are inherited in the proposed hierarchical model and devised into three stages to detect attacks in NIDS dataset. NIDS dataset is clustered using Dirichiet process (DP) clustering based on the underlying data distribution. Iteratively on each cluster, local denser areas are identified using local outlier factor (LOF) which in turn is discretized into four bins of separation based on LOF score. Further, in each bin the normal data instances are modeled using one class classifier (OCC). A combination of Density Estimation method, Reconstruction method, and Boundary methods are used for OCC model. A product rule combination of the three methods takes into consideration the strengths of each method in building a stronger OCC model. Any deviation from this model is considered as an attack. Experiments are conducted on KDD CUP'99 and SSENet-2011 datasets. The results show that the proposed model is able to identify attacks with higher detection rate and low false alarms.展开更多
In structural simulation and design,an accurate computational model directly determines the effectiveness of performance evaluation.To establish a high-fidelity dynamic model of a complex assembled structure,a Hierarc...In structural simulation and design,an accurate computational model directly determines the effectiveness of performance evaluation.To establish a high-fidelity dynamic model of a complex assembled structure,a Hierarchical Model Updating Strategy(HMUS)is developed for Finite Element(FE)model updating with regard to uncorrelated modes.The principle of HMUS is first elaborated by integrating hierarchical modeling concept,model updating technology with proper uncorrelated mode treatment,and parametric modeling.In the developed strategy,the correct correlated mode pairs amongst the uncorrelated modes are identified by an error minimization procedure.The proposed updating technique is validated by the dynamic FE model updating of a simple fixed–fixed beam.The proposed HMUS is then applied to the FE model updating of an aeroengine stator system(casings)to demonstrate its effectiveness.Our studies reveal that(A)parametric modeling technique is able to build an efficient equivalent model by simplifying complex structure in geometry while ensuring the consistency of mechanical characteristics;(B)the developed model updating technique efficiently processes the uncorrelated modes and precisely identifies correct Correlated Mode Pairs(CMPs)between FE model and experiment;(C)the proposed HMUS is accurate and efficient in the FE model updating of complex assembled structures such as aeroengine casings with large-scale model,complex geometry,high-nonlinearity and numerous parameters;(D)it is appropriate to update a complex structural FE model parameterized.The efforts of this study provide an efficient updating strategy for the dynamic model updating of complex assembled structures with experimental test data,which is promising to promote the precision and feasibility of simulation-based design optimization and performance evaluation of complex structures.展开更多
To ensure the integrity and security of cloud tenants' workload, and to prevent unexpected interference among tenants, cloud platform must make sure that system behaviors are trusted. By analyzing threats that exist ...To ensure the integrity and security of cloud tenants' workload, and to prevent unexpected interference among tenants, cloud platform must make sure that system behaviors are trusted. By analyzing threats that exist in the cloud platform, a novel trusted domain hierarchical model(TDHM) based on noninterference theory was proposed in this paper to solve these problems. First of all, the abstraction modeling of tenants' computing environment and trusted domain(TD) were introduced for designing TDHM with formal methods. Secondly, corresponding constraints for trusted running were given to satisfy security requirements of tenants' TD, and security properties of TDHM ware analyzed. After that, trusted behavior of TD was defined based on these properties, and the decision theorem of that was proved. It illustrated that the design and implementation of TD in cloud followed the model with characteristics of trusted behavior. Finally, the implementation of prototype system was introduced based on our previous work, and evaluation results showed that the performance loss was in the acceptable range.展开更多
Document-level machine translation(MT)remains challenging due to its difficulty in efficiently using documentlevel global context for translation.In this paper,we propose a hierarchical model to learn the global conte...Document-level machine translation(MT)remains challenging due to its difficulty in efficiently using documentlevel global context for translation.In this paper,we propose a hierarchical model to learn the global context for documentlevel neural machine translation(NMT).This is done through a sentence encoder to capture intra-sentence dependencies and a document encoder to model document-level inter-sentence consistency and coherence.With this hierarchical architecture,we feedback the extracted document-level global context to each word in a top-down fashion to distinguish different translations of a word according to its specific surrounding context.Notably,we explore the effect of three popular attention functions during the information backward-distribution phase to take a deep look into the global context information distribution of our model.In addition,since large-scale in-domain document-level parallel corpora are usually unavailable,we use a two-step training strategy to take advantage of a large-scale corpus with out-of-domain parallel sentence pairs and a small-scale corpus with in-domain parallel document pairs to achieve the domain adaptability.Experimental results of our model on Chinese-English and English-German corpora significantly improve the Transformer baseline by 4.5 BLEU points on average which demonstrates the effectiveness of our proposed hierarchical model in document-level NMT.展开更多
In the hierarchical random effect linear model, the Bayes estimator of random parameter are not only dependent on specific prior distribution but also it is difficult to calculate in most cases. This paper derives the...In the hierarchical random effect linear model, the Bayes estimator of random parameter are not only dependent on specific prior distribution but also it is difficult to calculate in most cases. This paper derives the distributed-free optimal linear estimator of random parameters in the model by means of the credibility theory method. The estimators the authors derive can be applied in more extensive practical scenarios since they are only dependent on the first two moments of prior parameter rather than on specific prior distribution. Finally, the results are compared with some classical models and a numerical example is given to show the effectiveness of the estimators.展开更多
Among complex network models,the hierarchical network model is the one most close to such real networks as world trade web,metabolic network,WWW,actor network,and so on.It has not only the property of power-law degree...Among complex network models,the hierarchical network model is the one most close to such real networks as world trade web,metabolic network,WWW,actor network,and so on.It has not only the property of power-law degree distribution,but also the scaling clustering coefficient property which Barabási-Albert(BA)model does not have.BA model is a model of network growth based on growth and preferential attachment,showing the scale-free degree distribution property.In this paper,we study the evolution of cooperation on a hierarchical network model,adopting the prisoner's dilemma(PD)game and snowdrift game(SG)as metaphors of the interplay between connected nodes.BA model provides a unifying framework for the emergence of cooperation.But interestingly,we found that on hierarchical model,there is no sign of cooperation for PD game,while the fre-quency of cooperation decreases as the common benefit decreases for SG.By comparing the scaling clustering coefficient prop-erties of the hierarchical network model with that of BA model,we found that the former amplifies the effect of hubs.Considering different performances of PD game and SG on complex network,we also found that common benefit leads to cooperation in the evolution.Thus our study may shed light on the emergence of cooperation in both natural and social environments.展开更多
This paper presents an anomaly detection approach to detect intrusions into computer systems. In this approach, a hierarchical hidden Markov model (HHMM) is used to represent a temporal profile of normal behavior in...This paper presents an anomaly detection approach to detect intrusions into computer systems. In this approach, a hierarchical hidden Markov model (HHMM) is used to represent a temporal profile of normal behavior in a computer system. The HHMM of the norm profile is learned from historic data of the system's normal behavior. The observed behavior of the system is analyzed to infer the probability that the HHMM of the norm profile supports the observed behavior. A low probability of support indicates an anomalous behavior that may result from intrusive activities. The model was implemented and tested on the UNIX system call sequences collected by the University of New Mexico group. The testing results showed that the model can clearly identify the anomaly activities and has a better performance than hidden Markov model.展开更多
This study developed a hierarchical Bayesian(HB)model for local and regional flood frequency analysis in the Dongting Lake Basin,in China.The annual maximum daily flows from 15 streamflow-gauged sites in the study are...This study developed a hierarchical Bayesian(HB)model for local and regional flood frequency analysis in the Dongting Lake Basin,in China.The annual maximum daily flows from 15 streamflow-gauged sites in the study area were analyzed with the HB model.The generalized extreme value(GEV)distribution was selected as the extreme flood distribution,and the GEV distribution location and scale parameters were spatially modeled through a regression approach with the drainage area as a covariate.The Markov chain Monte Carlo(MCMC)method with Gibbs sampling was employed to calculate the posterior distribution in the HB model.The results showed that the proposed HB model provided satisfactory Bayesian credible intervals for flood quantiles,while the traditional delta method could not provide reliable uncertainty estimations for large flood quantiles,due to the fact that the lower confidence bounds tended to decrease as the return periods increased.Furthermore,the HB model for regional analysis allowed for a reduction in the value of some restrictive assumptions in the traditional index flood method,such as the homogeneity region assumption and the scale invariance assumption.The HB model can also provide an uncertainty band of flood quantile prediction at a poorly gauged or ungauged site,but the index flood method with L-moments does not demonstrate this uncertainty directly.Therefore,the HB model is an effective method of implementing the flexible local and regional frequency analysis scheme,and of quantifying the associated predictive uncertainty.展开更多
Aspect-oriented modeling can uncover potential design faults, yet most existing work fails to achieve both separation and composition in a natural and succinct way. This study presents an aspect-oriented modeling and ...Aspect-oriented modeling can uncover potential design faults, yet most existing work fails to achieve both separation and composition in a natural and succinct way. This study presents an aspect-oriented modeling and analysis approach with hierarchical Coloured Petri Nets(HCPN). HCPN has sub-models and well-defined semantics combining a set of submodels. These two characteristics of HCPN are nicely integrated into aspect oriented modeling. Submodels are used to model aspects while the combination mechanism contributes to aspects weaving. Furthermore, the woven aspect oriented HCPN model can be simulated and analyzed by the CPN Tools. A systematic web application case study is conducted. The results show the system original properties are satisfied after weaving aspects and all design flaws are revealed. As such, the approach can support web application design and analysis in an aspect-oriented fashion concisely and effectively.展开更多
In order to compare the aviation network of mid-south,northwest and southwest of China to reveal the structure similarity and difference for providing quantitative evidence to construct regional aviation network and i...In order to compare the aviation network of mid-south,northwest and southwest of China to reveal the structure similarity and difference for providing quantitative evidence to construct regional aviation network and improve its structure,hierarchical index model of regional aviation network was established through dividing the aviation network into layers to research its structure characters.Data matrixes were defined to record the basic state of regional aviation network.Index matrixes were constructed to describe the quantitative features of regional aviation network.On the basis of these indexes,several structure indexes of all layers of aviation network were calculated to show the structure features of aviation network,such as ratio of passenger volume within the region with across the region,share rate of passenger volume among layers,ratio of average number of airline for each airport,ratio of average passenger volume for each airline and ratio of airline rate.According to the statistical data,similar structure of share rate of passenger volume among layers and average passenger volume for each airline in their regional aviation network was found after calculating.But on the side of ratio of passenger volume within the region with across the region,ratio of average number of airlines for each airport and ratio of airline rate were different.展开更多
In recent years,housing prices have attracted widespread attention,and the fluctuation of housing prices is due to a combination of many factors.In addition to the characteristics of the house itself,the price of a ho...In recent years,housing prices have attracted widespread attention,and the fluctuation of housing prices is due to a combination of many factors.In addition to the characteristics of the house itself,the price of a house is also affected by other factors,such as the community in which the house is located.This article used Beijing’s 2017 second-hand housing transaction data (based on second-hand housing transaction records on Lianjia.com),introduced a hierarchical linear model,and employed Stata software to analyze from different levels.It is intended to find the correlation between housing prices and different levels of characteristics,so to pin down the factors that affect prices of the second-hand housing.展开更多
This paper offers a symbiosis based hybrid modified DNA-ABC optimization algorithm which combines modified DNA concepts and artificial bee colony (ABC) algorithm to aid hierarchical fuzzy classification. According to ...This paper offers a symbiosis based hybrid modified DNA-ABC optimization algorithm which combines modified DNA concepts and artificial bee colony (ABC) algorithm to aid hierarchical fuzzy classification. According to literature, the ABC algorithm is traditionally applied to constrained and unconstrained problems, but is combined with modified DNA concepts and implemented for fuzzy classification in this present research. Moreover, from the best of our knowledge, previous research on the ABC algorithm has not combined it with DNA computing for hierarchical fuzzy classification to explore the merits of cooperative coevolution. Therefore, this paper is the first to apply the mechanism of symbiosis to create a hybrid modified DNA-ABC algorithm for hierarchical fuzzy classification applications. In this study, the partition number and the shape of the membership function are extracted by the symbiosis based hybrid modified DNA-ABC optimization algorithm, which provides both sufficient global exploration and also adequate local exploitation for hierarchical fuzzy classification. The proposed optimization algorithm is applied on five benchmark University of Irvine (UCI) data sets, and the results prove the efficiency of the algorithm.展开更多
Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical str...Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical structure model. To build an ISM of a production system, the partial correlation coefficient method is proposed to obtain the adjacency matrix, which can be transformed to ISM. According to estimation of correlation coefficient, the result can give actual variable correlations and eliminate effects of intermediate variables. Furthermore, this paper proposes an effective approach using ISM to analyze the main factors and basic mechanisms that affect the energy consumption in an ethylene production system. The case study shows that the proposed energy consumption analysis method is valid and efficient in improvement of energy efficiency in ethylene production.展开更多
The state of in situ stress is a crucial parameter in subsurface engineering,especially for critical projects like nuclear waste repository.As one of the two ISRM suggested methods,the overcoring(OC)method is widely u...The state of in situ stress is a crucial parameter in subsurface engineering,especially for critical projects like nuclear waste repository.As one of the two ISRM suggested methods,the overcoring(OC)method is widely used to estimate the full stress tensors in rocks by independent regression analysis of the data from each OC test.However,such customary independent analysis of individual OC tests,known as no pooling,is liable to yield unreliable test-specific stress estimates due to various uncertainty sources involved in the OC method.To address this problem,a practical and no-cost solution is considered by incorporating into OC data analysis additional information implied within adjacent OC tests,which are usually available in OC measurement campaigns.Hence,this paper presents a Bayesian partial pooling(hierarchical)model for combined analysis of adjacent OC tests.We performed five case studies using OC test data made at a nuclear waste repository research site of Sweden.The results demonstrate that partial pooling of adjacent OC tests indeed allows borrowing of information across adjacent tests,and yields improved stress tensor estimates with reduced uncertainties simultaneously for all individual tests than they are independently analysed as no pooling,particularly for those unreliable no pooling stress estimates.A further model comparison shows that the partial pooling model also gives better predictive performance,and thus confirms that the information borrowed across adjacent OC tests is relevant and effective.展开更多
基金Supported by the National Natural Science Foundation of China (No. 79931000) and The State Major Basic Research Development Program (No. G20000263).
文摘Towards integration of supply chain, manufacturing/production and investment decision making, this paper presents a hierarchical model architecture which contains six sub-models covering the areas of manufacturing control, production operation, design and revamp, production management, supply chain and investment decision making. Six types of flow, material, energy, information, humanware, partsware and capital are clasified. These flows connect enterprise components/subsystems to formulate system topology and logical structure. Enterprise components/subsystems are abstracted to generic elementary and composite classes. Finally, the model architecture is applied to a management system of an integrated suply chain, and suggestion are made on the usage of the model architecture and further development of the model as well as implementation issues.
文摘Digital libraries are complex systems and this brings difficulties for their evaluation. This paper proposes a hierarchical model to solve this problem, and puts the entangled matters into a clear-layered structure. Firstly, digital libraries(DLs thereafter)are classified into 5 groups in ascending gradations, i.e. mini DLs, small DLs, medium DLs,large DLs, and huge DLs by their scope of operation. Then, according to the characteristics of DLs at different operational scope and level of sophistication, they are further grouped into unitary DLs, union DLs and hybrid DLs accordingly. Based on this simulated structure,a hierarchical model for digital library evaluation is introduced, which evaluates DLs differentiatingly within a hierarchical scheme by using varying criteria based on their specific level of operational complexity such as at the micro-level, medium-level, and/or at the macro-level. Based on our careful examination and analysis of the current literature about DL evaluation system, an experiment is conducted by using the DL evaluation model along with its criteria for unitary DLs at micro-level. The main contents resulting from this evaluation experimentation and also those evaluation indicators and relevant issues of major concerns for DLs at medium-level and macro-level are also to be presented at some length.
文摘Computational complexity of complex system multiple fault diagnosis is a puzzle at all times. Based on the well known Mozetic's approach, a novel hierarchical model-based diagnosis methodology is put forward for improving efficency of multi-fault recognition and localization. Structural abstraction and weighted fault propagation graphs are combined to build diagnosis model. The graphs have weighted arcs with fault propagation probabilities and propagation strength. For solving the problem of coupled faults, two diagnosis strategies are used: one is the Lagrangian relaxation and the primal heuristic algorithms; another is the method of propagation strength. Finally, an applied example shows the applicability of the approach and experimental results are given to show the superiority of the presented technique.
基金supported by the Defense Foundation Scientific Research Fund under Grant No.9140A17030308DZ02,9140A16060409DZ02the National Natural Science Fundation of Chinaunder Grant No.60934002Dr.Lianke for the extensive discussions on the subject and UESTC for its support under Grant No.JX0756,Y02018023601059
文摘Due to the shortcomings of the diagnosis systems for complex electronic devices such as failure models hard to build and low fault isolation resolution, a new hierarchical modeling and diagnosis method is proposed based on multisignal model and support vector machine (SVM). Multisignal model is used to describe the failure propagation relationship in electronic device system, and the most probable failure printed circuit boards (PCBs) can be found by Bayes inference. The exact failure modes in the PCBs can be identified by SVM. The results show the proposed modeling and diagnosis method is effective and suitable for diagnosis for complex electronic devices.
文摘The annual passenger volume of airport reflected its passenger transport scale and the role in aviation network.The airports in whole country were divided into three layers:first layer airports,second layer airports and third layer airports.The airlines from the first layer airports consisted the first layer aviation network.The airlines from the second layer airports consisted the second layer aviation network.The airlines from the third layer airports consisted the third layer aviation network.The structure and function of different layer aviation network had significant differences.These differences were shown in the number of airlines,average number of airlines of each airport,annual passenger volume of airport and average passenger volume of each airline.National aviation network hierarchical model was constructed to describe the whole country aviation network.The matrix was built to describe the airline number,annual passenger volume,average number of airlines,average passenger volume of each airport and airline rate of aviation network.The index of national aviation network structure was constructed to show the ratio of index between different aviation network layer to describe the aviation network structure.The structure index was built to illustrate the macrostructural features of national aviation network.The statistics data in year 1988,1994,2001,2008 and 2015 of China aviation network were analyzed and basic data matrixes,basic index matrixes and structure index matrixes were calculated.The trend of ratio of corresponding index between the first layer and the second layer showed the change of basic structure of China aviation network.At meantime,the tendency of ratio of corresponding index between the third layer and the second layer also showed the change of basic structure.The trend of network general structure index illustrated that the large scaled new airports and airlines construction had significant influence on the national aviation network structure.
基金This research was funded by the CSIRO ResearchPlus Science Leader Grant Program.
文摘Ore sorting is a preconcentration technology and can dramatically reduce energy and water usage to improve the sustainability and profitability of a mining operation.In porphyry Cu deposits,Cu is the primary target,with ores usually containing secondary‘pay’metals such as Au,Mo and gangue elements such as Fe and As.Due to sensing technology limitations,secondary and deleterious materials vary in correlation type and strength with Cu but cannot be detected simultaneously via magnetic resonance(MR)ore sorting.Inferring the relationships between Cu and other elemental abundances is particularly critical for mineral processing.The variations in metal grade relationships occur due to the transition into different geological domains.This raises two questions-how to define these geological domains and how the metal grade relationship is influenced by these geological domains.In this paper,linear relationship is assumed between Cu grade and other metal grades.We applies a Bayesian hierarchical(partial-pooling)model to quantify the linear relationships between Cu,Au,and Fe grades from geochemical bore core data.The hierarchical model was compared with two other models-‘complete-pooling’model and‘nopooling’model.Mining blocks were split based on spatial domain to construct hierarchical model.Geochemical bore core data records metal grades measured from laboratory assay with spatial coordinates of sample location.Two case studies from different porphyry Cu deposits were used to evaluate the performance of the hierarchical model.Markov chain Monte Carlo(MCMC)was used to sample the posterior parameters.Our results show that the Bayesian hierarchical model dramatically reduced the posterior predictive variance for metal grades regression compared to the no-pooling model.In addition,the posterior inference in the hierarchical model is insensitive to the choice of prior.The data is wellrepresented in the posterior which indicates a robust model.The results show that the spatial domain can be successfully utilised for metal grade regression.Uncertainty in estimating the relationship between pay metals and both secondary and gangue elements is quantified and shown to be reduced with partial-pooling.Thus,the proposed Bayesian hierarchical model can offer a reliable and stable way to monitor the relationship between metal grades for ore sorting and other mineral processing options.
文摘Identification of attacks by a network intrusion detection system (NIDS) is an important task. In signature or rule based detection, the previously encountered attacks are modded, and signatures/rules are extracted. These rules are used to detect such attacks in future, but in anomaly or outlier detection system, the normal network traffic is modeled. Any deviation from the normal model is deemed to be an outlier/attack. Data mining and machine learning techniques are widely used in offline NIDS. Unsupervised and supervised learning techniques differ the way NIDS dataset is treated. The characteristic features of unsupervised and supervised learning are finding patterns in data, detecting outliers, and determining a learned function for input features, generalizing the data instances respectively. The intuition is that if these two techniques are combined, better performance may be obtained. Hence, in this paper the advantages of unsupervised and supervised techniques are inherited in the proposed hierarchical model and devised into three stages to detect attacks in NIDS dataset. NIDS dataset is clustered using Dirichiet process (DP) clustering based on the underlying data distribution. Iteratively on each cluster, local denser areas are identified using local outlier factor (LOF) which in turn is discretized into four bins of separation based on LOF score. Further, in each bin the normal data instances are modeled using one class classifier (OCC). A combination of Density Estimation method, Reconstruction method, and Boundary methods are used for OCC model. A product rule combination of the three methods takes into consideration the strengths of each method in building a stronger OCC model. Any deviation from this model is considered as an attack. Experiments are conducted on KDD CUP'99 and SSENet-2011 datasets. The results show that the proposed model is able to identify attacks with higher detection rate and low false alarms.
基金co-supported by National Natural Science Foundation of China(No.51975124)Shanghai International Cooperation Project of One Belt and One Road of China(No.20110741700)Major Research Special Project of Aeroengine and Gas Turbine of China(No.J2019-IV-0016)。
文摘In structural simulation and design,an accurate computational model directly determines the effectiveness of performance evaluation.To establish a high-fidelity dynamic model of a complex assembled structure,a Hierarchical Model Updating Strategy(HMUS)is developed for Finite Element(FE)model updating with regard to uncorrelated modes.The principle of HMUS is first elaborated by integrating hierarchical modeling concept,model updating technology with proper uncorrelated mode treatment,and parametric modeling.In the developed strategy,the correct correlated mode pairs amongst the uncorrelated modes are identified by an error minimization procedure.The proposed updating technique is validated by the dynamic FE model updating of a simple fixed–fixed beam.The proposed HMUS is then applied to the FE model updating of an aeroengine stator system(casings)to demonstrate its effectiveness.Our studies reveal that(A)parametric modeling technique is able to build an efficient equivalent model by simplifying complex structure in geometry while ensuring the consistency of mechanical characteristics;(B)the developed model updating technique efficiently processes the uncorrelated modes and precisely identifies correct Correlated Mode Pairs(CMPs)between FE model and experiment;(C)the proposed HMUS is accurate and efficient in the FE model updating of complex assembled structures such as aeroengine casings with large-scale model,complex geometry,high-nonlinearity and numerous parameters;(D)it is appropriate to update a complex structural FE model parameterized.The efforts of this study provide an efficient updating strategy for the dynamic model updating of complex assembled structures with experimental test data,which is promising to promote the precision and feasibility of simulation-based design optimization and performance evaluation of complex structures.
基金supported by the National Natural Science Foundation of China (61272447)the National Key Technology R&D Program of China (2012BAH18B05)the National New Generation Broadband Wireless Mobile Communication Network Major Project (03 Project) of China (12H1510)
文摘To ensure the integrity and security of cloud tenants' workload, and to prevent unexpected interference among tenants, cloud platform must make sure that system behaviors are trusted. By analyzing threats that exist in the cloud platform, a novel trusted domain hierarchical model(TDHM) based on noninterference theory was proposed in this paper to solve these problems. First of all, the abstraction modeling of tenants' computing environment and trusted domain(TD) were introduced for designing TDHM with formal methods. Secondly, corresponding constraints for trusted running were given to satisfy security requirements of tenants' TD, and security properties of TDHM ware analyzed. After that, trusted behavior of TD was defined based on these properties, and the decision theorem of that was proved. It illustrated that the design and implementation of TD in cloud followed the model with characteristics of trusted behavior. Finally, the implementation of prototype system was introduced based on our previous work, and evaluation results showed that the performance loss was in the acceptable range.
基金supported by the National Natural Science Foundation of China under Grant Nos.61751206,61673290 and 61876118the Postgraduate Research&Practice Innovation Program of Jiangsu Province of China under Grant No.KYCX20_2669a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD).
文摘Document-level machine translation(MT)remains challenging due to its difficulty in efficiently using documentlevel global context for translation.In this paper,we propose a hierarchical model to learn the global context for documentlevel neural machine translation(NMT).This is done through a sentence encoder to capture intra-sentence dependencies and a document encoder to model document-level inter-sentence consistency and coherence.With this hierarchical architecture,we feedback the extracted document-level global context to each word in a top-down fashion to distinguish different translations of a word according to its specific surrounding context.Notably,we explore the effect of three popular attention functions during the information backward-distribution phase to take a deep look into the global context information distribution of our model.In addition,since large-scale in-domain document-level parallel corpora are usually unavailable,we use a two-step training strategy to take advantage of a large-scale corpus with out-of-domain parallel sentence pairs and a small-scale corpus with in-domain parallel document pairs to achieve the domain adaptability.Experimental results of our model on Chinese-English and English-German corpora significantly improve the Transformer baseline by 4.5 BLEU points on average which demonstrates the effectiveness of our proposed hierarchical model in document-level NMT.
基金supported by the National Science Foundation of China under Grant Nos.71361015,71340010,71371074the Jiangxi Provincial Natural Science Foundation under Grant No.20142BAB201013+2 种基金China Postdoctoral Science Foundation under Grant No.2013M540534China Postdoctoral Fund special Project under Grant No.2014T70615Jiangxi Postdoctoral Science Foundation under Grant No.2013KY53
文摘In the hierarchical random effect linear model, the Bayes estimator of random parameter are not only dependent on specific prior distribution but also it is difficult to calculate in most cases. This paper derives the distributed-free optimal linear estimator of random parameters in the model by means of the credibility theory method. The estimators the authors derive can be applied in more extensive practical scenarios since they are only dependent on the first two moments of prior parameter rather than on specific prior distribution. Finally, the results are compared with some classical models and a numerical example is given to show the effectiveness of the estimators.
基金Project supported by the Natural Science Foundation of ZhejiangProvince, China (No. Y105697)the Ningbo Natural ScienceFoundation,China (No. 2005A610004)
文摘Among complex network models,the hierarchical network model is the one most close to such real networks as world trade web,metabolic network,WWW,actor network,and so on.It has not only the property of power-law degree distribution,but also the scaling clustering coefficient property which Barabási-Albert(BA)model does not have.BA model is a model of network growth based on growth and preferential attachment,showing the scale-free degree distribution property.In this paper,we study the evolution of cooperation on a hierarchical network model,adopting the prisoner's dilemma(PD)game and snowdrift game(SG)as metaphors of the interplay between connected nodes.BA model provides a unifying framework for the emergence of cooperation.But interestingly,we found that on hierarchical model,there is no sign of cooperation for PD game,while the fre-quency of cooperation decreases as the common benefit decreases for SG.By comparing the scaling clustering coefficient prop-erties of the hierarchical network model with that of BA model,we found that the former amplifies the effect of hubs.Considering different performances of PD game and SG on complex network,we also found that common benefit leads to cooperation in the evolution.Thus our study may shed light on the emergence of cooperation in both natural and social environments.
基金Supported by the Science and Technology Development Project Foundation of Tianjin (033800611, 05YFGZGX24200)
文摘This paper presents an anomaly detection approach to detect intrusions into computer systems. In this approach, a hierarchical hidden Markov model (HHMM) is used to represent a temporal profile of normal behavior in a computer system. The HHMM of the norm profile is learned from historic data of the system's normal behavior. The observed behavior of the system is analyzed to infer the probability that the HHMM of the norm profile supports the observed behavior. A low probability of support indicates an anomalous behavior that may result from intrusive activities. The model was implemented and tested on the UNIX system call sequences collected by the University of New Mexico group. The testing results showed that the model can clearly identify the anomaly activities and has a better performance than hidden Markov model.
基金supported by the National Natural Science Foundation of China(Grants No.51779074 and 41371052)the Special Fund for the Public Welfare Industry of the Ministry of Water Resources of China(Grant No.201501059)+3 种基金the National Key Research and Development Program of China(Grant No.2017YFC0404304)the Jiangsu Water Conservancy Science and Technology Project(Grant No.2017027)the Program for Outstanding Young Talents in Colleges and Universities of Anhui Province(Grant No.gxyq2018143)the Natural Science Foundation of Wanjiang University of Technology(Grant No.WG18030)
文摘This study developed a hierarchical Bayesian(HB)model for local and regional flood frequency analysis in the Dongting Lake Basin,in China.The annual maximum daily flows from 15 streamflow-gauged sites in the study area were analyzed with the HB model.The generalized extreme value(GEV)distribution was selected as the extreme flood distribution,and the GEV distribution location and scale parameters were spatially modeled through a regression approach with the drainage area as a covariate.The Markov chain Monte Carlo(MCMC)method with Gibbs sampling was employed to calculate the posterior distribution in the HB model.The results showed that the proposed HB model provided satisfactory Bayesian credible intervals for flood quantiles,while the traditional delta method could not provide reliable uncertainty estimations for large flood quantiles,due to the fact that the lower confidence bounds tended to decrease as the return periods increased.Furthermore,the HB model for regional analysis allowed for a reduction in the value of some restrictive assumptions in the traditional index flood method,such as the homogeneity region assumption and the scale invariance assumption.The HB model can also provide an uncertainty band of flood quantile prediction at a poorly gauged or ungauged site,but the index flood method with L-moments does not demonstrate this uncertainty directly.Therefore,the HB model is an effective method of implementing the flexible local and regional frequency analysis scheme,and of quantifying the associated predictive uncertainty.
基金supported by the NSF of China under grants No. 61173048 and No. 61300041Specialized Research Fund for the Doctoral Program of Higher Education under grant No. 20130074110015+2 种基金the Fundamental Research Funds for the Central Universities under Grant No.WH1314038the Humanities and Social Science Research Planning Fund of the Education Ministry of China under grant No.15YJCZH201the Research Innovation Program of Shanghai Municipal Education Commission under grant No. 14YZ134
文摘Aspect-oriented modeling can uncover potential design faults, yet most existing work fails to achieve both separation and composition in a natural and succinct way. This study presents an aspect-oriented modeling and analysis approach with hierarchical Coloured Petri Nets(HCPN). HCPN has sub-models and well-defined semantics combining a set of submodels. These two characteristics of HCPN are nicely integrated into aspect oriented modeling. Submodels are used to model aspects while the combination mechanism contributes to aspects weaving. Furthermore, the woven aspect oriented HCPN model can be simulated and analyzed by the CPN Tools. A systematic web application case study is conducted. The results show the system original properties are satisfied after weaving aspects and all design flaws are revealed. As such, the approach can support web application design and analysis in an aspect-oriented fashion concisely and effectively.
文摘In order to compare the aviation network of mid-south,northwest and southwest of China to reveal the structure similarity and difference for providing quantitative evidence to construct regional aviation network and improve its structure,hierarchical index model of regional aviation network was established through dividing the aviation network into layers to research its structure characters.Data matrixes were defined to record the basic state of regional aviation network.Index matrixes were constructed to describe the quantitative features of regional aviation network.On the basis of these indexes,several structure indexes of all layers of aviation network were calculated to show the structure features of aviation network,such as ratio of passenger volume within the region with across the region,share rate of passenger volume among layers,ratio of average number of airline for each airport,ratio of average passenger volume for each airline and ratio of airline rate.According to the statistical data,similar structure of share rate of passenger volume among layers and average passenger volume for each airline in their regional aviation network was found after calculating.But on the side of ratio of passenger volume within the region with across the region,ratio of average number of airlines for each airport and ratio of airline rate were different.
文摘In recent years,housing prices have attracted widespread attention,and the fluctuation of housing prices is due to a combination of many factors.In addition to the characteristics of the house itself,the price of a house is also affected by other factors,such as the community in which the house is located.This article used Beijing’s 2017 second-hand housing transaction data (based on second-hand housing transaction records on Lianjia.com),introduced a hierarchical linear model,and employed Stata software to analyze from different levels.It is intended to find the correlation between housing prices and different levels of characteristics,so to pin down the factors that affect prices of the second-hand housing.
文摘This paper offers a symbiosis based hybrid modified DNA-ABC optimization algorithm which combines modified DNA concepts and artificial bee colony (ABC) algorithm to aid hierarchical fuzzy classification. According to literature, the ABC algorithm is traditionally applied to constrained and unconstrained problems, but is combined with modified DNA concepts and implemented for fuzzy classification in this present research. Moreover, from the best of our knowledge, previous research on the ABC algorithm has not combined it with DNA computing for hierarchical fuzzy classification to explore the merits of cooperative coevolution. Therefore, this paper is the first to apply the mechanism of symbiosis to create a hybrid modified DNA-ABC algorithm for hierarchical fuzzy classification applications. In this study, the partition number and the shape of the membership function are extracted by the symbiosis based hybrid modified DNA-ABC optimization algorithm, which provides both sufficient global exploration and also adequate local exploitation for hierarchical fuzzy classification. The proposed optimization algorithm is applied on five benchmark University of Irvine (UCI) data sets, and the results prove the efficiency of the algorithm.
基金Supported by the National Natural Science Foundation of China(61374166,6153303)the Doctoral Fund of Ministry of Education of China(20120010110010)the Fundamental Research Funds for the Central Universities(YS1404,JD1413,ZY1502)
文摘Interpretative structural model(ISM) can transform a multivariate problem into several sub-variable problems to analyze a complex industrial structure in a more efficient way by building a multi-level hierarchical structure model. To build an ISM of a production system, the partial correlation coefficient method is proposed to obtain the adjacency matrix, which can be transformed to ISM. According to estimation of correlation coefficient, the result can give actual variable correlations and eliminate effects of intermediate variables. Furthermore, this paper proposes an effective approach using ISM to analyze the main factors and basic mechanisms that affect the energy consumption in an ethylene production system. The case study shows that the proposed energy consumption analysis method is valid and efficient in improvement of energy efficiency in ethylene production.
基金supported by the Guangdong Basic and Applied Basic Research Foundation(2023A1515011244).
文摘The state of in situ stress is a crucial parameter in subsurface engineering,especially for critical projects like nuclear waste repository.As one of the two ISRM suggested methods,the overcoring(OC)method is widely used to estimate the full stress tensors in rocks by independent regression analysis of the data from each OC test.However,such customary independent analysis of individual OC tests,known as no pooling,is liable to yield unreliable test-specific stress estimates due to various uncertainty sources involved in the OC method.To address this problem,a practical and no-cost solution is considered by incorporating into OC data analysis additional information implied within adjacent OC tests,which are usually available in OC measurement campaigns.Hence,this paper presents a Bayesian partial pooling(hierarchical)model for combined analysis of adjacent OC tests.We performed five case studies using OC test data made at a nuclear waste repository research site of Sweden.The results demonstrate that partial pooling of adjacent OC tests indeed allows borrowing of information across adjacent tests,and yields improved stress tensor estimates with reduced uncertainties simultaneously for all individual tests than they are independently analysed as no pooling,particularly for those unreliable no pooling stress estimates.A further model comparison shows that the partial pooling model also gives better predictive performance,and thus confirms that the information borrowed across adjacent OC tests is relevant and effective.