期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
A Lightweight Convolutional Neural Network with Hierarchical Multi-Scale Feature Fusion for Image Classification
1
作者 Adama Dembele Ronald Waweru Mwangi Ananda Omutokoh Kube 《Journal of Computer and Communications》 2024年第2期173-200,共28页
Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware reso... Convolutional neural networks (CNNs) are widely used in image classification tasks, but their increasing model size and computation make them challenging to implement on embedded systems with constrained hardware resources. To address this issue, the MobileNetV1 network was developed, which employs depthwise convolution to reduce network complexity. MobileNetV1 employs a stride of 2 in several convolutional layers to decrease the spatial resolution of feature maps, thereby lowering computational costs. However, this stride setting can lead to a loss of spatial information, particularly affecting the detection and representation of smaller objects or finer details in images. To maintain the trade-off between complexity and model performance, a lightweight convolutional neural network with hierarchical multi-scale feature fusion based on the MobileNetV1 network is proposed. The network consists of two main subnetworks. The first subnetwork uses a depthwise dilated separable convolution (DDSC) layer to learn imaging features with fewer parameters, which results in a lightweight and computationally inexpensive network. Furthermore, depthwise dilated convolution in DDSC layer effectively expands the field of view of filters, allowing them to incorporate a larger context. The second subnetwork is a hierarchical multi-scale feature fusion (HMFF) module that uses parallel multi-resolution branches architecture to process the input feature map in order to extract the multi-scale feature information of the input image. Experimental results on the CIFAR-10, Malaria, and KvasirV1 datasets demonstrate that the proposed method is efficient, reducing the network parameters and computational cost by 65.02% and 39.78%, respectively, while maintaining the network performance compared to the MobileNetV1 baseline. 展开更多
关键词 MobileNet Image Classification Lightweight Convolutional Neural Network Depthwise Dilated Separable Convolution hierarchical Multi-Scale Feature fusion
下载PDF
Exploring on Hierarchical Kalman Filtering Fusion Accuracy
2
作者 罗森林 张鹤飞 潘丽敏 《Journal of Beijing Institute of Technology》 EI CAS 1998年第4期373-379,共7页
Aim To analyze the traditional hierarchical Kalman filtering fusion algorithm theoretically and point out that the traditional Kalman filtering fusion algorithm is complex and can not improve the tracking precision we... Aim To analyze the traditional hierarchical Kalman filtering fusion algorithm theoretically and point out that the traditional Kalman filtering fusion algorithm is complex and can not improve the tracking precision well, even it is impractical, and to propose the weighting average fusion algorithm. Methods The theoretical analysis and Monte Carlo simulation methods were ed to compare the traditional fusion algorithm with the new one,and the comparison of the root mean square error statistics values of the two algorithms was made. Results The hierarchical fusion algorithm is not better than the weighting average fusion and feedback weighting average algorithm The weighting filtering fusion algorithm is simple in principle, less in data, faster in processing and better in tolerance.Conclusion The weighting hierarchical fusion algorithm is suitable for the defective sensors.The feedback of the fusion result to the single sersor can enhance the single sensorr's precision. especially once one sensor has great deviation and low accuracy or has some deviation of sample period and is asynchronous to other sensors. 展开更多
关键词 Kalman filtering hierarchical fusion algorithm weighting average feedback fusion algorithm
下载PDF
Cross-Modal Complementary Network with Hierarchical Fusion for Multimodal Sentiment Classification 被引量:5
3
作者 Cheng Peng Chunxia Zhang +3 位作者 Xiaojun Xue Jiameng Gao Hongjian Liang Zhengdong Niu 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2022年第4期664-679,共16页
Multimodal Sentiment Classification(MSC)uses multimodal data,such as images and texts,to identify the users'sentiment polarities from the information posted by users on the Internet.MSC has attracted considerable ... Multimodal Sentiment Classification(MSC)uses multimodal data,such as images and texts,to identify the users'sentiment polarities from the information posted by users on the Internet.MSC has attracted considerable attention because of its wide applications in social computing and opinion mining.However,improper correlation strategies can cause erroneous fusion as the texts and the images that are unrelated to each other may integrate.Moreover,simply concatenating them modal by modal,even with true correlation,cannot fully capture the features within and between modals.To solve these problems,this paper proposes a Cross-Modal Complementary Network(CMCN)with hierarchical fusion for MSC.The CMCN is designed as a hierarchical structure with three key modules,namely,the feature extraction module to extract features from texts and images,the feature attention module to learn both text and image attention features generated by an image-text correlation generator,and the cross-modal hierarchical fusion module to fuse features within and between modals.Such a CMCN provides a hierarchical fusion framework that can fully integrate different modal features and helps reduce the risk of integrating unrelated modal features.Extensive experimental results on three public datasets show that the proposed approach significantly outperforms the state-of-the-art methods. 展开更多
关键词 multimodal sentiment analysis multimodal fusion Cross-Modal Complementary Network(CMCN) hierarchical fusion joint optimization
原文传递
Grasp Detection with Hierarchical Multi-Scale Feature Fusion and Inverted Shuffle Residual
4
作者 Wenjie Geng Zhiqiang Cao +3 位作者 Peiyu Guan Fengshui Jing Min Tan Junzhi Yu 《Tsinghua Science and Technology》 SCIE EI CAS CSCD 2024年第1期244-256,共13页
Grasp detection plays a critical role for robot manipulation.Mainstream pixel-wise grasp detection networks with encoder-decoder structure receive much attention due to good accuracy and efficiency.However,they usuall... Grasp detection plays a critical role for robot manipulation.Mainstream pixel-wise grasp detection networks with encoder-decoder structure receive much attention due to good accuracy and efficiency.However,they usually transmit the high-level feature in the encoder to the decoder,and low-level features are neglected.It is noted that low-level features contain abundant detail information,and how to fully exploit low-level features remains unsolved.Meanwhile,the channel information in high-level feature is also not well mined.Inevitably,the performance of grasp detection is degraded.To solve these problems,we propose a grasp detection network with hierarchical multi-scale feature fusion and inverted shuffle residual.Both low-level and high-level features in the encoder are firstly fused by the designed skip connections with attention module,and the fused information is then propagated to corresponding layers of the decoder for in-depth feature fusion.Such a hierarchical fusion guarantees the quality of grasp prediction.Furthermore,an inverted shuffle residual module is created,where the high-level feature from encoder is split in channel and the resultant split features are processed in their respective branches.By such differentiation processing,more high-dimensional channel information is kept,which enhances the representation ability of the network.Besides,an information enhancement module is added before the encoder to reinforce input information.The proposed method attains 98.9%and 97.8%in image-wise and object-wise accuracy on the Cornell grasping dataset,respectively,and the experimental results verify the effectiveness of the method. 展开更多
关键词 grasp detection hierarchical multi-scale feature fusion skip connections with attention inverted shuffle residual
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部