期刊文献+
共找到8篇文章
< 1 >
每页显示 20 50 100
Deep Structure Optimization for Incremental Hierarchical Fuzzy Systems Using Improved Differential Evolution Algorithm
1
作者 Yue Zhu Tao Zhao 《Computer Modeling in Engineering & Sciences》 SCIE EI 2024年第2期1139-1158,共20页
The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) a... The optimization of the rule base of a fuzzy logic system (FLS) based on evolutionary algorithm has achievednotable results. However, due to the diversity of the deep structure in the hierarchical fuzzy system (HFS) and thecorrelation of each sub fuzzy system, the uncertainty of the HFS’s deep structure increases. For the HFS, a largenumber of studies mainly use fixed structures, which cannot be selected automatically. To solve this problem, thispaper proposes a novel approach for constructing the incremental HFS. During system design, the deep structureand the rule base of the HFS are encoded separately. Subsequently, the deep structure is adaptively mutated basedon the fitness value, so as to realize the diversity of deep structures while ensuring reasonable competition amongthe structures. Finally, the differential evolution (DE) is used to optimize the deep structure of HFS and theparameters of antecedent and consequent simultaneously. The simulation results confirm the effectiveness of themodel. Specifically, the root mean square errors in the Laser dataset and Friedman dataset are 0.0395 and 0.0725,respectively with rule counts of rules is 8 and 12, respectively.When compared to alternative methods, the resultsindicate that the proposed method offers improvements in accuracy and rule counts. 展开更多
关键词 hierarchical fuzzy system automatic optimization differential evolution regression problem
下载PDF
A special hierarchical fuzzy neural-networks based reinforcement learning for multi-variables system
2
作者 张文志 吕恬生 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2005年第6期661-666,共6页
Proposes a reinforcement learning scheme based on a special Hierarchical Fuzzy Neural-Networks (HFNN)for solving complicated learning tasks in a continuous multi-variables environment. The output of the previous layer... Proposes a reinforcement learning scheme based on a special Hierarchical Fuzzy Neural-Networks (HFNN)for solving complicated learning tasks in a continuous multi-variables environment. The output of the previous layer in the HFNN is no longer used as if-part of the next layer, but used only in then-part. Thus it can deal with the difficulty when the output of the previous layer is meaningless or its meaning is uncertain. The proposed HFNN has a minimal number of fuzzy rules and can successfully solve the problem of rules combination explosion and decrease the quantity of computation and memory requirement. In the learning process, two HFNN with the same structure perform fuzzy action composition and evaluation function approximation simultaneously where the parameters of neural-networks are tuned and updated on line by using gradient descent algorithm. The reinforcement learning method is proved to be correct and feasible by simulation of a double inverted pendulum system. 展开更多
关键词 hierarchical fuzzy neural-networks reinforcement learning double inverted pendulum
下载PDF
A Fuzzy Logic Based Supervisory Hierarchical Control Scheme for Real Time Pressure Control 被引量:6
3
作者 N. Kanagaraj P. Sivashanmugam S. Paramasivam 《International Journal of Automation and computing》 EI 2009年第1期88-96,共9页
This paper describes a supervisory hierarchical fuzzy controller (SHFC) for regulating pressure in a real-time pilot pressure control system. The input scaling factor tuning of a direct expert controller is made usi... This paper describes a supervisory hierarchical fuzzy controller (SHFC) for regulating pressure in a real-time pilot pressure control system. The input scaling factor tuning of a direct expert controller is made using the error and process input parameters in a closed loop system in order to obtain better controller performance for set-point change and load disturbances. This on-line tuning method reduces operator involvement and enhances the controller performance to a wide operating range. The hierarchical control scheme consists of an intelligent upper level supervisory fuzzy controller and a lower level direct fuzzy controller. The upper level controller provides a mechanism to the main goal of the system and the lower level controller delivers the solutions to a particular situation. The control algorithm for the proposed scheme has been developed and tested using an ARM7 microcontroller-based embedded target board for a nonlinear pressure process having dead time. To demonstrate the effectiveness, the results of the proposed hierarchical controller, fuzzy controller and conventional proportional-integral (PI) controller are analyzed. The results prove that the SHFC performance is better in terms of stability and robustness than the conventional control methods. 展开更多
关键词 Pressure control supervisory hierarchical fuzzy controller (SHFC) fuzzy controller ARM7 processor embedded controller
下载PDF
Movability of the tracked pipeline-robot based on hierarchical fuzzy control 被引量:3
4
作者 王永雄 Su Jianbo 《High Technology Letters》 EI CAS 2011年第2期166-172,共7页
The turning motion of a tracked pipeline-robot implemented by skid steering is a nonholonomic dynamic problem with intrinsic nonlinearity, to which the classical control method is inappropriate and cannot be applied. ... The turning motion of a tracked pipeline-robot implemented by skid steering is a nonholonomic dynamic problem with intrinsic nonlinearity, to which the classical control method is inappropriate and cannot be applied. This paper presents a novel path tracking control method based on hierarchical fuzzy structure. The controller consists of three sub-level low dimensional fuzzy control systems: fuzzy supervisory control, fuzzy steering and fuzzy velocity control. As a result, establishing the bases of rules for the fuzzy control becomes feasible and simplified, and the related controller can be adapted to complicated ground and environment. Using this method, the number of fuzzy controt rules is greatly decreased so that the curse of dimensionality causing the multivariable problem does not occur. Simulation and experimental results validate the effectiveness of the proposed method with satisfied performance on path tracking. Autonomous navigation of the caterpillar-inspired pipeline-robot is also implemented based on the sensor feedbacks. 展开更多
关键词 path tracking tracked pipeline-robot hierarchical fuzzy control
下载PDF
Advanced Hierarchical Fuzzy Classification Model Adopting Symbiosis Based DNA-ABC Optimization Algorithm
5
作者 Ting-Cheng Feng Tzuu-Hseng S. Li 《Applied Mathematics》 2016年第5期440-455,共16页
This paper offers a symbiosis based hybrid modified DNA-ABC optimization algorithm which combines modified DNA concepts and artificial bee colony (ABC) algorithm to aid hierarchical fuzzy classification. According to ... This paper offers a symbiosis based hybrid modified DNA-ABC optimization algorithm which combines modified DNA concepts and artificial bee colony (ABC) algorithm to aid hierarchical fuzzy classification. According to literature, the ABC algorithm is traditionally applied to constrained and unconstrained problems, but is combined with modified DNA concepts and implemented for fuzzy classification in this present research. Moreover, from the best of our knowledge, previous research on the ABC algorithm has not combined it with DNA computing for hierarchical fuzzy classification to explore the merits of cooperative coevolution. Therefore, this paper is the first to apply the mechanism of symbiosis to create a hybrid modified DNA-ABC algorithm for hierarchical fuzzy classification applications. In this study, the partition number and the shape of the membership function are extracted by the symbiosis based hybrid modified DNA-ABC optimization algorithm, which provides both sufficient global exploration and also adequate local exploitation for hierarchical fuzzy classification. The proposed optimization algorithm is applied on five benchmark University of Irvine (UCI) data sets, and the results prove the efficiency of the algorithm. 展开更多
关键词 Classification Problem hierarchical fuzzy Model Symbiosis Based Modified DNA-ABC
下载PDF
Machine Learning for Data Fusion:A Fuzzy AHP Approach for Open Issues
6
作者 Vinay Kukreja Asha Abraham +3 位作者 K.Kalaiselvi K.Deepa Thilak Shanmugasundaram Hariharan Shih-Yu Chen 《Computers, Materials & Continua》 SCIE EI 2023年第12期2899-2914,共16页
Data fusion generates fused data by combining multiple sources,resulting in information that is more consistent,accurate,and useful than any individual source and more reliable and consistent than the raw original dat... Data fusion generates fused data by combining multiple sources,resulting in information that is more consistent,accurate,and useful than any individual source and more reliable and consistent than the raw original data,which are often imperfect,inconsistent,complex,and uncertain.Traditional data fusion methods like probabilistic fusion,set-based fusion,and evidential belief reasoning fusion methods are computationally complex and require accurate classification and proper handling of raw data.Data fusion is the process of integrating multiple data sources.Data filtering means examining a dataset to exclude,rearrange,or apportion data according to the criteria.Different sensors generate a large amount of data,requiring the development of machine learning(ML)algorithms to overcome the challenges of traditional methods.The advancement in hardware acceleration and the abundance of data from various sensors have led to the development of machine learning(ML)algorithms,expected to address the limitations of traditional methods.However,many open issues still exist as machine learning algorithms are used for data fusion.From the literature,nine issues have been identified irrespective of any application.The decision-makers should pay attention to these issues as data fusion becomes more applicable and successful.A fuzzy analytical hierarchical process(FAHP)enables us to handle these issues.It helps to get the weights for each corresponding issue and rank issues based on these calculated weights.The most significant issue identified is the lack of deep learning models used for data fusion that improve accuracy and learning quality weighted 0.141.The least significant one is the cross-domain multimodal data fusion weighted 0.076 because the whole semantic knowledge for multimodal data cannot be captured. 展开更多
关键词 Signal level fusion feature level fusion decision level fusion fuzzy hierarchical process machine learning
下载PDF
Studies on Multi-Criteria Decision-Making-Based Healthcare Systems Using the Machine Learning 被引量:1
7
作者 Sk Anamul Hoda Abhoy Chand Mondal 《Journal of Artificial Intelligence and Technology》 2023年第2期53-59,共7页
There is a lot of information in healthcare and medical records.However,it is challenging for humans to turn data into information and spot hidden patterns in today’s digitally based culture.Effective decision suppor... There is a lot of information in healthcare and medical records.However,it is challenging for humans to turn data into information and spot hidden patterns in today’s digitally based culture.Effective decision support technologies can help medical professionals find critical information concealed in voluminous data and support their clinical judgments and in different healthcare management activities.This paper presented an extensive literature survey for healthcare systems using machine learning based on multi-criteria decision-making.Various existing studies are considered for review,and a critical analysis is being done through the reviews study,which can help the researchers to explore other research areas to cater for the need of the field. 展开更多
关键词 fuzzy analytical hierarchical process healthcare:machine learning multi-criteria decision-making
下载PDF
An Efficient Deep Learning-based Content-based Image Retrieval Framework 被引量:1
8
作者 M.Sivakumar N.M.Saravana Kumar N.Karthikeyan 《Computer Systems Science & Engineering》 SCIE EI 2022年第11期683-700,共18页
The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology.Image retrieval has become one of the vital tools in image processing applications.Content-Base... The use of massive image databases has increased drastically over the few years due to evolution of multimedia technology.Image retrieval has become one of the vital tools in image processing applications.Content-Based Image Retrieval(CBIR)has been widely used in varied applications.But,the results produced by the usage of a single image feature are not satisfactory.So,multiple image features are used very often for attaining better results.But,fast and effective searching for relevant images from a database becomes a challenging task.In the previous existing system,the CBIR has used the combined feature extraction technique using color auto-correlogram,Rotation-Invariant Uniform Local Binary Patterns(RULBP)and local energy.However,the existing system does not provide significant results in terms of recall and precision.Also,the computational complexity is higher for the existing CBIR systems.In order to handle the above mentioned issues,the Gray Level Co-occurrence Matrix(GLCM)with Deep Learning based Enhanced Convolution Neural Network(DLECNN)is proposed in this work.The proposed system framework includes noise reduction using histogram equalization,feature extraction using GLCM,similarity matching computation using Hierarchal and Fuzzy c-Means(HFCM)algorithm and the image retrieval using DLECNN algorithm.The histogram equalization has been used for computing the image enhancement.This enhanced image has a uniform histogram.Then,the GLCM method has been used to extract the features such as shape,texture,colour,annotations and keywords.The HFCM similarity measure is used for computing the query image vector's similarity index with every database images.For enhancing the performance of this image retrieval approach,the DLECNN algorithm is proposed to retrieve more accurate features of the image.The proposed GLCM+DLECNN algorithm provides better results associated with high accuracy,precision,recall,f-measure and lesser complexity.From the experimental results,it is clearly observed that the proposed system provides efficient image retrieval for the given query image. 展开更多
关键词 Content based image retrieval(CBIR) improved gray level cooccurrence matrix(GLCM) hierarchal and fuzzy C-means(HFCM)algorithm deep learning based enhanced convolution neural network(DLECNN)
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部