In this paper, we demonstrate the high resolution seismic reflection data for a depth range of several hundred meters across the Fenhe fault in Taiyuan city, China. In combination with the relevant borehole logs, thes...In this paper, we demonstrate the high resolution seismic reflection data for a depth range of several hundred meters across the Fenhe fault in Taiyuan city, China. In combination with the relevant borehole logs, these data provide useful constraints on the accurate position, geometry and deformation rate of the fault, as well as the kinematics of recent fault motion. The high resolution seismic reflection profiling revealed that the western branch of the Fenhe fault is a high angle, eastward dipping, oblique normal fault, and cutting up to the lower part of the Quaternary system. It was revealed that the top breaking point of this fault is at a depth of ~70m below the ground surface. A borehole log across the Fenhe fault permitted us to infer that there are two high angle, oppositely dipping, oblique normal faults. The eastem branch lies beneath the eastern embankment of the Fenhe river, dipping to the west and cutting into the Holocene late Pleistocene strata with a maximum vertical offset of ~8m. Another borehole log across the northern segment of the Fenhe fault indicates that the western branch of this fault has cut into the Holocene late Pleistocene strata with a maximum vertical offset of ~6m. The above mentioned data provide a minimum average Pleistocene Holocene vertical slip rate of 0 06~0 08mm/a and a maximum average large earthquake recurrence interval of 5 0~6 7ka for the Fenhe fault.展开更多
文摘In this paper, we demonstrate the high resolution seismic reflection data for a depth range of several hundred meters across the Fenhe fault in Taiyuan city, China. In combination with the relevant borehole logs, these data provide useful constraints on the accurate position, geometry and deformation rate of the fault, as well as the kinematics of recent fault motion. The high resolution seismic reflection profiling revealed that the western branch of the Fenhe fault is a high angle, eastward dipping, oblique normal fault, and cutting up to the lower part of the Quaternary system. It was revealed that the top breaking point of this fault is at a depth of ~70m below the ground surface. A borehole log across the Fenhe fault permitted us to infer that there are two high angle, oppositely dipping, oblique normal faults. The eastem branch lies beneath the eastern embankment of the Fenhe river, dipping to the west and cutting into the Holocene late Pleistocene strata with a maximum vertical offset of ~8m. Another borehole log across the northern segment of the Fenhe fault indicates that the western branch of this fault has cut into the Holocene late Pleistocene strata with a maximum vertical offset of ~6m. The above mentioned data provide a minimum average Pleistocene Holocene vertical slip rate of 0 06~0 08mm/a and a maximum average large earthquake recurrence interval of 5 0~6 7ka for the Fenhe fault.