We investigate high-order harmonic generations(HHGs)under comparison of Weyl cones in two types.Due to the hyperboloidal electron pocket structure,strong noncentrosymmetrical generations in high orders are observed ar...We investigate high-order harmonic generations(HHGs)under comparison of Weyl cones in two types.Due to the hyperboloidal electron pocket structure,strong noncentrosymmetrical generations in high orders are observed around a single type-ⅡWeyl point,especially at zero frequency.Such a remarkable DC signal is proved to have attributions from the intraband transition after spectral decomposition.Under weak pulse electric field,the linear optical response of a nontilted Weyl cone is consistent with the Kubo theory.With extensive numerical simulations,we conclude that the non-zero chemical potential can enhance the even-order generations,from the slightly tilted system to the over-tilted systems.In consideration of dynamical symmetries,type-Ⅰand type-ⅡWeyl cones also show different selective responses under the circularly polarized light.Finally,using a more realistic model containing two pairs of Weyl points,we demonstrate that paired Weyl points with opposite chirality can suppress the overall even-order generations.展开更多
Response of the wave packet of a one-dimensional Coulomb atom to an intense laser field is calculated using the symmetrized split operator fast Fourier method. The high-order harmonic generation (HHG) of the initial...Response of the wave packet of a one-dimensional Coulomb atom to an intense laser field is calculated using the symmetrized split operator fast Fourier method. The high-order harmonic generation (HHG) of the initial state separately being the ground and excited states is presented. When the hardness parameter a in the soft Coulomb potential V(x) =-1√x^2+α is chosen to be small enough, the so-called hard Coulomb potential V(x)=1/|x| can be obtained. It is well known that the hard one-dimensional Coulomb atom has an unstable ground state with an energy eigenvalue of - 0.5 and it has no states corresponding to physical states in the true atoms, and has the first and second excited states being degenerate. The parity effects on the HHG can be seen from the first and second excited states of the hard one-dimensional Coulomb atom. The HHG spectra of the excited states from both the soft and hard Coulomb atom models are shown to have more complex structures and to be much stronger than the corresponding HHG spectrum of the ground state of the soft Coulomb model with a = 2 in the same laser field. Laser-induced non-resonant one-photon emission is also observed.展开更多
We utilized a set of fused silica thin plates to broaden the spectrum of 1kHz,30 fs Ti:sapphire amplified laser pulses to an octave.Following the compression by chirped mirror pairs,the generated few-cycle pulses were...We utilized a set of fused silica thin plates to broaden the spectrum of 1kHz,30 fs Ti:sapphire amplified laser pulses to an octave.Following the compression by chirped mirror pairs,the generated few-cycle pulses were focused onto an argon filled gas cell.We detected high order harmonics corresponding to a train of 209 as pulses,characterized by the reconstruction of attosecond beating by interference of two-photon transition(RABITT)technique.Compared with the conventional attosecond pulse trains,the broad harmonics in such pulse trains cover more energy range,so it is more efficient in studying some typical cases,such as resonances,with frequency resolved RABITT.As the solid thin plates can support high power supercontinuum generation,it is feasible to tailor the spectrum to have different central wavelength and spectral width,which will make the RABITT source work in different applications.展开更多
Recent advances in selected areas of laser science are briefly reviewed. They include laser technology, coherent control of quantum systems by lasers, X ray generation by ultrashort high intensity laser pulses, and ...Recent advances in selected areas of laser science are briefly reviewed. They include laser technology, coherent control of quantum systems by lasers, X ray generation by ultrashort high intensity laser pulses, and laser spectroscopic studies of surface catalysis in real environment.展开更多
基金performed at the Chinese Academy of Science Terahertz Science Centersupported by the National Natural Science Foundation of China(Grant No.61988102)
文摘We investigate high-order harmonic generations(HHGs)under comparison of Weyl cones in two types.Due to the hyperboloidal electron pocket structure,strong noncentrosymmetrical generations in high orders are observed around a single type-ⅡWeyl point,especially at zero frequency.Such a remarkable DC signal is proved to have attributions from the intraband transition after spectral decomposition.Under weak pulse electric field,the linear optical response of a nontilted Weyl cone is consistent with the Kubo theory.With extensive numerical simulations,we conclude that the non-zero chemical potential can enhance the even-order generations,from the slightly tilted system to the over-tilted systems.In consideration of dynamical symmetries,type-Ⅰand type-ⅡWeyl cones also show different selective responses under the circularly polarized light.Finally,using a more realistic model containing two pairs of Weyl points,we demonstrate that paired Weyl points with opposite chirality can suppress the overall even-order generations.
基金Project supported by the National Natural Science Foundation of China (Grant No 10474138) and the National High-Tech Inertial Confinement Fusion Committee in China.
文摘Response of the wave packet of a one-dimensional Coulomb atom to an intense laser field is calculated using the symmetrized split operator fast Fourier method. The high-order harmonic generation (HHG) of the initial state separately being the ground and excited states is presented. When the hardness parameter a in the soft Coulomb potential V(x) =-1√x^2+α is chosen to be small enough, the so-called hard Coulomb potential V(x)=1/|x| can be obtained. It is well known that the hard one-dimensional Coulomb atom has an unstable ground state with an energy eigenvalue of - 0.5 and it has no states corresponding to physical states in the true atoms, and has the first and second excited states being degenerate. The parity effects on the HHG can be seen from the first and second excited states of the hard one-dimensional Coulomb atom. The HHG spectra of the excited states from both the soft and hard Coulomb atom models are shown to have more complex structures and to be much stronger than the corresponding HHG spectrum of the ground state of the soft Coulomb model with a = 2 in the same laser field. Laser-induced non-resonant one-photon emission is also observed.
基金Project supported by the National Key R&D Program of China(Grant No.2017YFB0405202)the Major Program of the National Natural Science Foundation of China(Grant No.61690221)+1 种基金the Key Program of the National Natural Science Foundation of China(Grant No.11434016)the National Natural Science Foundation of China(Grant Nos.11574384,11674386,and 11774277)
文摘We utilized a set of fused silica thin plates to broaden the spectrum of 1kHz,30 fs Ti:sapphire amplified laser pulses to an octave.Following the compression by chirped mirror pairs,the generated few-cycle pulses were focused onto an argon filled gas cell.We detected high order harmonics corresponding to a train of 209 as pulses,characterized by the reconstruction of attosecond beating by interference of two-photon transition(RABITT)technique.Compared with the conventional attosecond pulse trains,the broad harmonics in such pulse trains cover more energy range,so it is more efficient in studying some typical cases,such as resonances,with frequency resolved RABITT.As the solid thin plates can support high power supercontinuum generation,it is feasible to tailor the spectrum to have different central wavelength and spectral width,which will make the RABITT source work in different applications.
文摘Recent advances in selected areas of laser science are briefly reviewed. They include laser technology, coherent control of quantum systems by lasers, X ray generation by ultrashort high intensity laser pulses, and laser spectroscopic studies of surface catalysis in real environment.