期刊文献+
共找到40篇文章
< 1 2 >
每页显示 20 50 100
Effect of long-period stacking ordered structure on very high cycle fatigue properties of Mg-Gd-Y-Zn-Zr alloys
1
作者 Xiangyu WANG Chao HE +3 位作者 Xue Li Lang LI Yongjie LIU Qingyuan WANG 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第8期2811-2822,共12页
Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on th... Magnesium alloys with a long-period stacking ordered(LPSO)structure usually possess excellent static strength,but their fatigue behaviors are poorly understood.This work presents the effect of the LPSO structure on the crack behaviors of Mg alloys in a very high cycle fatigue(VHCF)regime.The LPSO lamellas lead to a facet-like cracking process along the basal planes at the crack initiation site and strongly prohibit the early crack propagation by deflecting the growth direction.The stress intensity factor at the periphery of the faceted area is much higher than the conventional LPSO-free Mg alloys,contributing higher fatigue crack propagation threshold of LPSO-containing Mg alloys.Microstructure observation at the facets reveals a layer of ultrafine grains at the fracture surface due to the cyclic contact of the crack surface,which supports the numerous cyclic pressing model describing the VHCF crack initiation behavior. 展开更多
关键词 fatigue crack initiation Long-period stacking ordered structure Mg alloys Ultrafine grains Very high cycle fatigue
下载PDF
High cycle fatigue behavior of the second generation single crystal superalloy DD6 被引量:13
2
作者 史振学 李嘉荣 +1 位作者 刘世忠 韩梅 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第5期998-1003,共6页
The second generation single crystal superalloy DD6 with 0.10%Hf and 0.34%Hf (in mass fraction) was subjected to high-cycle fatigue (HCF) loading at temperatures of 700 ℃ in ambient atmosphere. SEM was used to de... The second generation single crystal superalloy DD6 with 0.10%Hf and 0.34%Hf (in mass fraction) was subjected to high-cycle fatigue (HCF) loading at temperatures of 700 ℃ in ambient atmosphere. SEM was used to determine the initiation site and the failure mechanism. Evolution of the microstructure was investigated by TEM observation. The results show that fatigue limit of DD6 alloy with 0.34%Hf is a little smaller than that of the alloy with 0.10%Hf. The fatigue cracks initiated on the surface or near the surface of the specimens. The crack would propagate along { 111 } octahedral slip planes, rather than perpendicular to the loading axis of specimen. Typical fatigue striation formed in steady propagation of fatigue crack. The fracture mechanisms of the high cycle fatigue of DD6 alloys with 0.10%Hf and 0.34%Hf are quasi-cleavage fracture. Different types of dislocation structures were developed during high cycle fatigue deformation. 展开更多
关键词 HF single crystal superalloy DD6 high cycle fatigue
下载PDF
Effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue regime 被引量:16
3
作者 Chao Gu Yan-ping Bao +2 位作者 Peng Gan Min Wang Jin-shan He 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2018年第6期623-629,共7页
This work aims to investigate the effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue(VHCF) regime. The size and type of inclusions in the steel were quantitatively analyzed... This work aims to investigate the effect of main inclusions on crack initiation in bearing steel in the very high cycle fatigue(VHCF) regime. The size and type of inclusions in the steel were quantitatively analyzed, and VHCF tests were performed. Some fatigue cracks were found to be initiated in the gaps between inclusions(Al2 O3, Mg O-Al2 O3) and the matrix, while other cracks originated from the interior of inclusions(Ti N, Mn S). To explain the related mechanism, the tessellated stresses between inclusions and the matrix were calculated and compared with the yield stress of the matrix. Results revealed that the inclusions could be classified into two types under VHCF; of these two, only one type could be regarded as holes. Findings in this research provide a better understanding of how inclusions affect the high cycle fatigue properties of bearing steel. 展开更多
关键词 very high cycle fatigue bearing steel INCLUSIONS tessellated slress crack initiation
下载PDF
Effect of nano-sized Al2O3 reinforcing particles on uniaxial and high cycle fatigue behaviors of hot-forged AZ31B magnesium alloy 被引量:6
4
作者 M.DAREINI A.H.JABBARI M.SEDIGHI 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2020年第5期1249-1266,共18页
The effect of hot-forging process was investigated on microstructural and mechanical properties of AZ31 B alloy and AZ31 B/1.5 vol.%Al2 O3 nanocomposite under static and cycling loading. The as-cast alloy and composit... The effect of hot-forging process was investigated on microstructural and mechanical properties of AZ31 B alloy and AZ31 B/1.5 vol.%Al2 O3 nanocomposite under static and cycling loading. The as-cast alloy and composite were firstly subjected to a homogenization heat treatment at 450 ℃ and then an open-die forging at 450 ℃. The results indicated that the presence of reinforcing particles led to grain refinement and improvement of dynamic recrystallization. The forging process was more effective to eliminate the porosity in the cast alloy workpiece. Microhardness of the forged composite was increased by up to 80% and 16%, in comparison with those of the cast and forged alloy samples, respectively. Ultimate tensile strength and maximum tensile strain of the composite were improved by up to 45% and 23%, compared with those of the forged alloy in similar regions. These enhancements were respectively 50% and 37% in the compression test. The composite exhibited a fatigue life improvement in the region with low applied strain;however, a degradation was observed in the high applied strain region. Unlike AZ31 B samples, tensile, compressive and high cycle fatigue behaviors of the composite showed less sensitivity to the applied strain, which can be attributed to the amount of porosity in the samples before and after the hot-forging. 展开更多
关键词 magnesium matrix nanocomposite AZ31B alloy nano-sized Al2O3 open-die hot-forging high cycle fatigue mechanical properties microstructural evolution
下载PDF
Effect of inclusion on high cycle fatigue response of a powder metallurgy tool steel 被引量:1
5
作者 姚君 曲选辉 +2 位作者 Rafi-ud-din 何新波 章林 《Journal of Central South University》 SCIE EI CAS 2012年第7期1773-1779,共7页
The high cycle fatigue response of a high V-alloyed powder metallurgy tool steel (AISI 11) with different inclusion sizes was studied. Two materials of this grade at a similar hardness of about HRC 60 were subjected... The high cycle fatigue response of a high V-alloyed powder metallurgy tool steel (AISI 11) with different inclusion sizes was studied. Two materials of this grade at a similar hardness of about HRC 60 were subjected to axial loading fatigue tests, tensile tests and fracture toughness measurements to investigate their mechanical properties. Large inclusion above 70 ~rn is indicated to be responsible for the tensile fracture which happens before yielding. The fatigue strength obtained up to 107 cycles is found to decrease from approximately 1 538 MPa to 1000 MPa with the inclusion size increasing above 30 Izm. The internally induced crack initiation is mainly attributed to the surface compressive residual stress of 300-450 MPa. Fractographic evaluation demonstrates that the crack initiation and propagation controlling factors of the two materials are almost the same, indicating that the two factors would be insignificantly affected by the inclusion size level. Paris sizes of the two materials both show a tendency to decrease as the ratio of stress intensity factor of crack origin to factor of fish-eye increases. The investigation into the relationship between stress intensity factors and fatigue life of the two materials further indicates that the high cycle fatigue behavior of AISI 11 is controlled by crack propagation. 展开更多
关键词 powder metallurgy tool steel high cycle fatigue FRACTOGRAPHY FISH-EYE INCLUSION
下载PDF
Effects of Aging Temperature on Microstructure and High Cycle Fatigue Performance of 7075 Aluminum Alloy 被引量:2
6
作者 杨大炼 刘义伦 +3 位作者 LI Songbai MA Liyong LIU Chi YI Jiuhuo 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第3期677-684,共8页
The hardness, the tensile and the high-cycle fatigue(HCF) performances of 7075 aluminum alloy were investigated under temper T651, solution treated at 380 ℃ for 0.5 h and aged at different temperatures(150, 170, 1... The hardness, the tensile and the high-cycle fatigue(HCF) performances of 7075 aluminum alloy were investigated under temper T651, solution treated at 380 ℃ for 0.5 h and aged at different temperatures(150, 170, 190 ℃) for 10 hours. The optimal microstructures and the fatigue fracture surfaces were observed. The results show that the hardness and the tensile performances are at their optimum at T651, but the fatigue life is the shortest. The hardness and the elongation are the lowest after solution treatment. With the aging temperature increasing(150-190 ℃), the HCF is improved. The crack is initiated from the impurity particles on the subsurface. Treated at 170 ℃,the area of the quasi-cleavage plane and the width of parallel serrated sections of the crack propagation are the largest. With increasing aging temperature, the dimple size of finally fracture surfaces becomes larger and the depth deeper. 展开更多
关键词 creep aging forming(CAF) high cycle fatigue(HCF) microstructure 7075 aluminum alloy
下载PDF
Current understanding of ultra-high cycle fatigue 被引量:2
7
作者 Qingyuan Wang Muhammad Kashif Khan Claude Bathias 《Theoretical & Applied Mechanics Letters》 CAS 2012年第3期1-6,共6页
The fatigue life of numerous aerospace,locomotive,automotive and biomedical structures may go beyond 10~8 cycles.Determination of long life fatigue behavior becomes extremely important for better understanding and des... The fatigue life of numerous aerospace,locomotive,automotive and biomedical structures may go beyond 10~8 cycles.Determination of long life fatigue behavior becomes extremely important for better understanding and design of the components and structures.Initially,before the invention of ultrasonic fatigue testing,most of the engineering materials were supposed to exhibit fatigue life up to 10~7 cycles or less.This paper reviews current understanding of some fundamental aspects on the development of accelerated fatigue testing method and its application in ultra-high cycle fatigue,crack initiation and growth mechanisms of internal fracture,S-N diagram,fatigue limit and life prediction, etc. 展开更多
关键词 very high cycle fatigue ultrasonic fatigue testing INCLUSIONS fatigue failure fatigue limit
下载PDF
Very high cycle fatigue behavior of bridge steel welded joint 被引量:3
8
作者 Chao He Yongjie Liu +1 位作者 Donghui Fang Qingyuan Wang 《Theoretical & Applied Mechanics Letters》 2012年第3期36-40,共5页
Very high cycle fatigue(VHCF) behaviors of bridge steel(Q345) welded joints were investigated using an ultrasonic fatigue test system at room temperature with a stress ratio R = -1. The results show that the fatig... Very high cycle fatigue(VHCF) behaviors of bridge steel(Q345) welded joints were investigated using an ultrasonic fatigue test system at room temperature with a stress ratio R = -1. The results show that the fatigue strength of welded joints is dropped by an average of 60% comparing to the base metal and the fatigue failure still occurred beyond 10~7 cycles.The fatigue fracture of welded joints in the low cycle regime generally occurred at the solder while at the heat-affected zone(HAZ) in the very high cycle regime.The fatigue fracture surface was analyzed with scanning electron microscopy(SEM),showing welding defects such as pore,micro-crack and inclusion were the main factors on decreasing the fatigue properties of welded joints.The effect of welding defects on the fatigue behaviors of welded joints was discussed in terms of experimental results and finite element simulations. 展开更多
关键词 welded joint S-N curve failure mechanism very high cycle fatigue
下载PDF
Correlation of crack growth rate and stress ratio for fatigue damage containing very high cycle fatigue regime 被引量:2
9
作者 Chengqi Sun Youshi Hong 《Theoretical & Applied Mechanics Letters》 2012年第3期11-14,共4页
A model is proposed to correlate the crack growth rate and stress ratio containing very high cycle fatigue regime.The model is verified by the experimental data in literature.Then a formula is derived for the effect o... A model is proposed to correlate the crack growth rate and stress ratio containing very high cycle fatigue regime.The model is verified by the experimental data in literature.Then a formula is derived for the effect of mean stress on fatigue strength,and it is used to estimate the fatigue strength of a bearing steel in very high cycle fatigue regime at different stress ratios.The estimated results are also compared with those by Goodman formula. 展开更多
关键词 very high cycle fatigue crack growth rate stress ratio fatigue strength
下载PDF
Effect of low cycle fatigue pre-damage on very high cycle fatigue 被引量:2
10
作者 Zhiyong Huang Qingyuan Wang +1 位作者 Daniele Wagner Claude Bathias 《Theoretical & Applied Mechanics Letters》 2012年第3期23-26,共4页
Carbon-manganese steel is often applied in components of pipes in nuclear plant. Ultrasonic fatigue tests following low cycle fatigue (LCF) cycles damaged are used to study the strength of very high cycle fatigure ... Carbon-manganese steel is often applied in components of pipes in nuclear plant. Ultrasonic fatigue tests following low cycle fatigue (LCF) cycles damaged are used to study the strength of very high cycle fatigure (VHCF). The comparison of test results of simple VHCF and cumulative fatigue (LCF plus VHCF) shows that LCF load influences the following VHCF strength. Continuum damage mechanics model is extended to VHCF region. 展开更多
关键词 low cycle fatigue very high cycle fatigue continuum damage mechanics cumulative fatiguedamage
下载PDF
Very high cycle fatigue for GCr15 steel with smooth and hole-defect specimens 被引量:1
11
作者 Zhengqiang Lei Aiguo Zhao +2 位作者 Jijia Xie Chengqi Sun Youshi Hong 《Theoretical & Applied Mechanics Letters》 2012年第3期7-10,共4页
Very high cycle fatigue(VHCF) properties of a low temperature tempering bearing steel GCr15 with smooth and hole-defect specimens are studied by employing a rotary bending test machine with frequency of 52.5 Hz.Both... Very high cycle fatigue(VHCF) properties of a low temperature tempering bearing steel GCr15 with smooth and hole-defect specimens are studied by employing a rotary bending test machine with frequency of 52.5 Hz.Both smooth and hole-defect specimens break in VHCF regime with some difference in fatigue crack initiation.For smooth specimens,a fine granular area(FGA) is observed near the grain boundary in the fracture surface of the specimens broken after 10~7 cycles. But no FGA is observed in the hole-defect specimens broken in VHCF regime,and the VHCF crack does not initiate from the small hole at the surface as it does at low or high cycle fatigue regime. Internal stress is employed to explain the VHCF behavior of these two types of specimens.At last,an advanced dislocation model based on Tanaka and Mura model is proposed to illustrate the internal stress process and to predict fatigue crack initiation life with FGA observed in the fracture region. 展开更多
关键词 Very high cycle fatigue GCR15 FGA hole-defect experimental research
下载PDF
HIGH CYCLE FATIGUE RELIABILITY ANALYSIS ON ROTOR HUB BASED ON APPROXIMATION TECHNIQUE
12
作者 姜年朝 倪俊 +3 位作者 周光明 张逊 戴勇 张志清 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2013年第4期335-342,共8页
A high cycle fatigue reliability analysis approach to helicopter rotor hub is proposed under working load spectrum. Automatic calculation for the approach is implemented through writing the calculating programs. In th... A high cycle fatigue reliability analysis approach to helicopter rotor hub is proposed under working load spectrum. Automatic calculation for the approach is implemented through writing the calculating programs. In the system, the modification of geometric model of rotor hub is controlled by several parameters, and finite element method and S-N curve method are then employed to solve the fatigue life by automatically assigned parameters. A database between assigned parameters and fatigue life is obtained via Latin Hypercube Sampling (LHS) on toler- ance zone of rotor hub. Different data-fitting technologies are used and compared to determine a highest-precision approximation for this database. The parameters are assumed to he independent of each other and follow normal distributions. Fatigue reliability is then computed by the Monte Carlo (MC) method and the mean-value first order second moment (MFOSM) method. Results show that the approach has high efficiency and precision, and is suit- able for engineering application. 展开更多
关键词 helicopters rotor hub PARAMETERIZATION high cycle fatigue RELIABILITY approximate model
下载PDF
High cycle fatigue behavior of the forged Mg-7Gd-5Y-1Nd-0.5Zr alloy
13
作者 D.Wu S.Q.Li +3 位作者 M.Hong R.S.Chen E.H.Han W.Ke 《Journal of Magnesium and Alloys》 SCIE EI CAS 2014年第4期357-362,共6页
This paper investigated the high cycle fatigue behavior of a forged Mg-7Gd-5Y-1Nd-0.5Zr alloy with different stress concentration factor(Kt),under different stress ratio(R),and along different loading direction.The sm... This paper investigated the high cycle fatigue behavior of a forged Mg-7Gd-5Y-1Nd-0.5Zr alloy with different stress concentration factor(Kt),under different stress ratio(R),and along different loading direction.The smooth specimen(Kt=1),under R=0.1 and along longitude direction,shows a high fatigue strength of 162 MPa at 107 cycles.The fatigue behavior of the forged Mg-7Gd-5Y-1Nd-0.5Zr alloy exhibits a high sensitive to the notch.Moreover,change of stress ratio from 0.1 to−1 may also result in a bad fatigue property.The flux inclusions were elongated along longitude direction and/or transverse direction during the forging process of the Mg-7Gd-5Y-1Nd-0.5Zr alloy.The interface between the flux inclusion and the matrix may debond and serve as the crack initiation site during the fatigue loading process,leading to the deterioration of the fatigue property along thickness direction and a high anisotropic fatigue behavior between longitude direction and thickness direction. 展开更多
关键词 Magnesium alloy FORGE high cycle fatigue Stress ratio INCLUSION
下载PDF
EFFECT OF FABRICATION ON HIGH CYCLE FATIGUE PROPERTIES OF COPPER THIN FILMS
14
作者 Jun-Hyub Park Joong-Hyok +1 位作者 An Yun-Jae Kim Hyeon-Chang Choi 《Acta Mechanica Solida Sinica》 SCIE EI 2008年第4期318-326,共9页
The influence of fabrication on the tensile and fatigue behavior of copper films manufactured by 3 kinds of fabrication methods was investigated. The tensile and high cycle fatigue tests were performed using the test ... The influence of fabrication on the tensile and fatigue behavior of copper films manufactured by 3 kinds of fabrication methods was investigated. The tensile and high cycle fatigue tests were performed using the test machine developed by authors. Young's moduli (72, 71 and 69 GPa, respectively) are lower than the literature values (108-145 GPa), while the yield strengths were as high as 358, 350 and 346 MPa, respectively and the ultimate strengths as 462, 456 and 446 MPa, respectively. There is not much difference in the tensile properties of the 3 kinds of films. There is little difference in the fatigue properties of the 3 kinds of films but one of them has shorter fatigue life than others in high cycle region and longer fatigue life than others in low cycle region. 展开更多
关键词 mechanical properties thin film COPPER high cycle fatigue test
下载PDF
High cycle fatigue life prediction method for tail gearbox casing of a helicopter transmission system
15
作者 刘星 chen ya-nong +1 位作者 ning xiang-rong xie jun-ling 《Journal of Chongqing University》 CAS 2017年第2期72-78,共7页
A method and procedure of high cycle fatigue life prediction for helicopter transmission system tail gearbox casing is presented, including fatigue test load, three parameters S-N curve, reduction factor and cumulativ... A method and procedure of high cycle fatigue life prediction for helicopter transmission system tail gearbox casing is presented, including fatigue test load, three parameters S-N curve, reduction factor and cumulative damage law. According to the fatigue test results, the design load spectrum and the three parameters S-N curve, a fatigue life prediction of the tail gearbox casing of a helicopter is performed as an example. 展开更多
关键词 tail gearbox casing high cycle fatigue life prediction fatigue test
下载PDF
Influence of Ageing Heat Treatment on the High Cycle Fatigue of an 8090 Al-Li Alloy
16
作者 Suhua AI Zhongguang WANG Yun ZHANG and Zhuangqi HU(State Key Laboratory for Fatigue and Fracture of Materials, Institute of Metal Research,Chinese Academy of Sciences, Shenyang 110015, China) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1994年第6期445-450,共6页
Fatigue lives for the smooth and notched specimens of 8090 Al-Li alloy jn the different ageing conditions have been studied. For the smooth samples of 8090 alloy the artificial ageing results in an increase in fatigue... Fatigue lives for the smooth and notched specimens of 8090 Al-Li alloy jn the different ageing conditions have been studied. For the smooth samples of 8090 alloy the artificial ageing results in an increase in fatigue life in comparison with natural ageing. On the contrary, the notched specimens of 8090 alloy in the naturally aged condition show higher fatigue life than in the peak-aged. The exposure to either the peak-aged or naturally aged leads to superior fatigue properties of Al-Li alloy to the traditional high strength aluminum alloys of 7075 and 2024, especially in the latter aged condition. In all ageing conditions, i,e. naturally, under-, peak- and over-aged, the peak-aged 8090 alloy displays the highest fatigue life and the over-aged material has a minimum value at the same stress amplitude. The difference in fatigue life is mainly attributable to the size and distribution of strengthening precipitates as well as the wide of precipitate free zones (PFZ's) along grain boundaries. 展开更多
关键词 AL LI Influence of Ageing Heat Treatment on the high cycle fatigue of an 8090 Al-Li Alloy
下载PDF
Improving fatigue strength of bainite/martensite dual-phase steels in very high cycle fatigue regime by refining microstructures
17
作者 Yangbo Liu Shouxin Li +3 位作者 Zhengou Yang Jingyu Cui Jialin Gu Bingzhe Bai 《Theoretical & Applied Mechanics Letters》 2012年第3期15-18,共4页
Very high cycle fatigue behaviors of two bainite/martensite dual-phase steels were investigated.One of the steels was cyclic rapid heat treated and its microstructures were refined. Fatigue strength of the steel is 22... Very high cycle fatigue behaviors of two bainite/martensite dual-phase steels were investigated.One of the steels was cyclic rapid heat treated and its microstructures were refined. Fatigue strength of the steel is 225 MPa higher than that without refining.Observation of fracture surfaces show that the fatigue cracks initiate at bainites for non-refined steel and at non-metallic inclusions for the refined steel.The size of inclusions is much smaller than that of bainites which results in the improvement of fatigue strength. 展开更多
关键词 very high cycle fatigue duplex-phase steel refining microstructure fatigue strength
下载PDF
High cycle fatigue behavior of titanium microalloyed high-strength beam steels
18
作者 Zhi-jun Gao Guang-fei Pan +3 位作者 Yu Song Shui-ze Wang Xiao-yu Ye Xin-ping Mao 《Journal of Iron and Steel Research International》 SCIE EI CAS CSCD 2023年第11期2267-2279,共13页
The realization of an ideal combination of mechanical and fatigue properties is prerequisites for practical application of titanium(Ti)microalloyed steel in automotive field.The fatigue behavior of four Ti microalloye... The realization of an ideal combination of mechanical and fatigue properties is prerequisites for practical application of titanium(Ti)microalloyed steel in automotive field.The fatigue behavior of four Ti microalloyed high-strength beam steels with different Ti contents was systematically studied.The results show that the content of microalloying element Ti has a significant effect on the fatigue properties,especially in the steel with a high Ti content.For the experimental Ti microalloyed steel,inclusion-induced crack initiation is the main fatigue failure mode.Different from general fatigue fracture mechanism in Ti-contained steel,no TiN,which is the most detrimental to fatigue behavior,was found in fatigue crack initiation area.However,the large-sized TiN and oxide complex inclusion with a core-shell structure is the dominant cause of fatigue fracture.Because of the intense-localized deformation at the interface between complex inclusion and matrix,the angular TiN in the outer shell has a serious deteriorating effect on the fatigue properties,which is consistent with the result of the Kernel average misorientation map.Besides,the modification effect of a small amount of MnS on large-sized inclusion is not obvious and has little effect on the fatigue behavior.For more practical guidance,the critical inclusion sizes of the experimental steels were also investigated by experimental extrapolation method.With the increasing tensile strength,the inclusion sensitivity of the experimental steels increases,leading to the small critical inclusion size. 展开更多
关键词 Titanium microalloyed steel high cycle fatigue fatigue fracture Critical inclusion size
原文传递
High-cycle fatigue behavior of friction stir butt welded 6061 aluminium alloy 被引量:8
19
作者 Hrishikesh DAS Debayan CHAKRABORTY Tapan KUMAR PAL 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2014年第3期648-656,共9页
Friction stir welding (FSW) of 6061 aluminium alloy butt joint was carried out at each rotation speed of 600, 800, 1000, 1200 r/min for two different travel speeds, 80 and 100 mm/min, at a constant probe depth of 1.... Friction stir welding (FSW) of 6061 aluminium alloy butt joint was carried out at each rotation speed of 600, 800, 1000, 1200 r/min for two different travel speeds, 80 and 100 mm/min, at a constant probe depth of 1.85 mm. The calculated energy input based on the FSW parameters studied shows that the ultimate tensile strength (UTS) of the butt joint is obtained within a certain range of energy input of 297 kJ to 354 kJ out of total range of energy input studied from 196 kJ to 405 kJ. The fatigue behaviors of high-strength and low-strength joints performed at different stress ratios, i.e., 0.5, 0.3, 0.1, -0.3, -0.5, indicate that the fatigue behaviors of both the welds are sensitive to the microstructural features, such as stir zone (SZ), thermo mechanically affected zone (TMAZ) and heat affected zone (HAZ). The observed fatigue strengths were discussed in terms of the microstructure, crack path behavior and fracture surface. 展开更多
关键词 Al alloy friction stir welding (FSW) high cycle fatigue stress ratio (R-ratio) crack path
下载PDF
High-temperature failure mechanism and defect sensitivity of TC17 titanium alloy in high cycle fatigue 被引量:5
20
作者 Gen Li Chengqi Sun 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2022年第27期128-140,共13页
Crack initiation is an essential stage of fatigue process due to its direct effect on fatigue failure.However,for titanium alloys in high-temperature high cycle fatigue(HCF),the crack initiation mechanisms remain uncl... Crack initiation is an essential stage of fatigue process due to its direct effect on fatigue failure.However,for titanium alloys in high-temperature high cycle fatigue(HCF),the crack initiation mechanisms remain unclear and the understanding for the defect sensitivity is also lacking.In this study,a series of fatigue tests and multi-scale microstructure characterizations were conducted to explore the high-temperature failure mechanism,and the coupled effect of temperature and defect on TC17 titanium alloy in HCF.It was found that an oxygen-rich layer(ORL)was produced at specimen surface at elevated temperatures,and brittle fracture of ORL at surface played a critical role for surface crack initiation in HCF.Besides,internal crack initiation with nanograins at high temperatures was a novel finding for the titanium alloy.Based on energy dispersive spectroscopy,electron backscatter diffraction and transmission electron microscope characterizations,the competition between surface and internal crack initiations at high temperatures was related to ORL at surface and dislocation resistance in inner microstructure.The fatigue strengths of smooth specimens decreased at elevated temperatures due to the lower dislocation resistance.While the fatigue strengths of the specimens with defect were not very sensitive to the temperatures.Finally,a fatigue strength model considering the coupled effect of temperature and defect was proposed for TC17titanium alloy. 展开更多
关键词 TC17 titanium alloy high temperature DEFECT high cycle fatigue Oxygen-rich layer Rough area
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部