Lithium-ion batteries(LIBs)are presently dominant mobile power sources due to their high energy density,long lifespan,and low self-discharging rates.The safety of LIBs has been concerned all the time and become the ma...Lithium-ion batteries(LIBs)are presently dominant mobile power sources due to their high energy density,long lifespan,and low self-discharging rates.The safety of LIBs has been concerned all the time and become the main problem restricting the development of high energy density LIBs.As a significant part of LIBs,the properties of separators have a significant effect on the capacity and performances of batteries and play an important role in the safety of LIBs.In recent years,researchers devoted themselves to the development of various multi-functional safe separators from different views of methods,materials,and practical requirements.In this review,we mainly focus on the recent progress in the development of high-safety separators with high thermal stability,good lithium dendritic resistance,high mechanical strength and novel multifunction for high-safety LIBs and have in-depth discussions regarding the separator's significant contribution to enhance the safety and performances of the batteries.Furthermore,the future directions and challenges of separators for the next-generation high-safety and high energy density rechargeable lithium batteries are also provided.展开更多
In order to improve the drivability and energy efficiency of electric vehicle (EV), more and more batteries are connected in series with high voltage which makes it necessary to monitor the electric parameters of hi...In order to improve the drivability and energy efficiency of electric vehicle (EV), more and more batteries are connected in series with high voltage which makes it necessary to monitor the electric parameters of high voltage system (HVS) to ensure the high voltage safety. A high voltage safety management system is developed to solve this critical issue. Several key electric parameters including pre-charge, contact resistance, insulation resistance and remaining capacity are monitored and analyzed based on the presented equivalent models. An electronic unit called high voltage safety controller is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated and the on-line electric parameters monitor strategy is discussed. The real vehicle experiment results indicate that the high voltage safety management system designed is suitable for EV application.展开更多
A composite separator of SiC/PVDF-HFP was synthesized for lithium-ion batteries with high thermal and mechanical stabilities.Benefiting from the nanoscale,high hardness,and melting point of SiC,SiC/PVDFHFP with highly...A composite separator of SiC/PVDF-HFP was synthesized for lithium-ion batteries with high thermal and mechanical stabilities.Benefiting from the nanoscale,high hardness,and melting point of SiC,SiC/PVDFHFP with highly uniform microstructure was obtained.This polarization caused by barrier penetration was significantly restrained.Due to the Si-F bond between SiC and PVDF-HFP,the structural stability has been obviously enhanced,which could suppress the growth of lithium(Li) dendrite.Furthermore,some 3D reticulated Si nanowires are found on the surface of Li anode,which also greatly inhibit Li dendrites and result in irregular flakes of Li metal.Especially,the shrinkage of 6% SiC/PVDF-HFP at 150℃ is only 5%,which is notably lower than those of PVDF-HFP and Celgard2500.The commercial LiFePO_(4) cell assembled with 6% SiC/PVDF-HFP possesses a specific capacity of 157.8 mA h g^(-1) and coulomb efficiency of 98% at 80℃.In addition,the tensile strength and modulus of 6% SiC/PVDF-HFP could reach 14.6 and 562 MPa,respectively.And a small deformation(1000 nm) and strong deformation recovery are obtained under a high additional load(2.3 mN).Compared with PVDF-HFP and Celgard2500,the symmetric Li cell assembled with 6% SiC/PVDF-HFP has not polarized after 900 cycles due to its excellent mechanical stabilities.This strategy provides a feasible solution for the composite separator of high-safety batteries with a high temperature and impact resistance.展开更多
Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-dens...Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-density battery systems.SPEs with superior thermal stability,good processability,and high mechanical modulus obtain increasing attentions.However,SPE-based batteries are not impenetrable due to their decomposition and combustibility under extreme conditions.Researchers believe incorporating appropriate flame-retardant additives/solvents/fragments into SPEs can intrinsically reduce their flammability to solve the battery safety issues.In this review,the recent research progress of incombustible SPEs,with special emphasis on flame-retardant structural design,is summarized.Specifically,a brief introduction of flame-retardant mechanism,evaluation index for safety of SPEs,and a detailed overview of the latest advances on diverse-types SPEs in various battery systems are highlighted.The deep insight into thermal ru naway process,the free-standing incombustible GPEs,and the ratio nal design of pouch cell structures may be the main directions to motivate revolutionary next-generation for safety batteries.展开更多
With the rapid development of lithium-ion batteries(LIBs),safety problems are the great obstacles that restrict large-scale applications of LIBs,especially for the high-energy-density electric vehicle industry.Develop...With the rapid development of lithium-ion batteries(LIBs),safety problems are the great obstacles that restrict large-scale applications of LIBs,especially for the high-energy-density electric vehicle industry.Developing component materials(e.g.,cathode,anode,electrolyte,and separator)with high thermal stability and intrinsic safety is the ultimate solution to improve the safety of LIBs.Separators are crucial components that do not directly participate in electrochemical reactions during charging/discharging processes,but play a vital role in determining the electrochemical performance and safety of LIBs.In this review,the recent advances on traditional separators modified with ceramic materials and multifunctional separators ranging from the prevention of the thermal runaway to the flame retardant are summarized.The component–structure–performance relationship of separators and their effect on the comprehensive performance of LIBs are discussed in detail.Furthermore,the research challenges and future directions toward the advancement in separators for high-safety LIBs are also proposed.展开更多
Herein,a flexible ZIF-67/PAN hybrid membrane was successfully prepared by the incorporation of ZIF-67 nanoparticles and PAN nanofibers through electrospinning method.The hybrid membrane presented tomatoes on sticks st...Herein,a flexible ZIF-67/PAN hybrid membrane was successfully prepared by the incorporation of ZIF-67 nanoparticles and PAN nanofibers through electrospinning method.The hybrid membrane presented tomatoes on sticks structures with one single PAN fiber stringing series of ZIF-67 nanoparticles.The morphology,electrolyte wettability,heat resistance,flexibility,and electrochemical properties of the electrospun ZIF-67/PAN membranes were discussed.Among the membranes prepared with different percentage of ZIF-67,the 30% ZIF-67/PAN membrane exhibited outstanding heat shrinkage resistance(remained intact at 200℃ for 1 h),excellent electrolyte uptake(556.39%),wide electrochemical window(~5.25 V)and high ionic conductivity(2.98 mS cm^(−1)).When used as lithium-ion batteries(LIBs)separators,the cells assembled by 30% ZIF-67/PAN membrane presented excellent rate capacity and high capacity retention of 86.9% after 300 cycles at 1C.More importantly,the cells assembled with ZIF-67/PAN membranes repeated bent for 1000 times also exhibited high rate performance and maintained capacity retention of 92% after 100 cycles at 1 C.The characterization and the electrochemical testing suggest the electrospinning prepared ZIF-67/PAN flexible membranes can be expected to be used as potential separator for advanced batteries with high safety and high performance.展开更多
The safety problems encountered with lithium–sulfur batteries(LSBs)hinder their development for practical applications.Herein,a highly thermally conductive separator was constructed by cross‐weaving super‐aligned c...The safety problems encountered with lithium–sulfur batteries(LSBs)hinder their development for practical applications.Herein,a highly thermally conductive separator was constructed by cross‐weaving super‐aligned carbon nanotubes(SA‐C)on super‐aligned boron nitride@carbon nanotubes(SA‐BC)to create a composite film(SA‐BC/SA‐C).This separator was used to fabricate safe LSBs with improved electrochemical performance.The highly aligned separator structure created a uniform thermal field that could rapidly dissipate heat accumulated during continuous operation due to internal resistance,which prevented the development of extremely high temperatures.The array of boron nitride nanosheets endowed the composite separator with a large number of adsorption sites,while the highly graphitized carbon nanotube skeleton accelerated the catalytic conversion of high‐valence polysulfides into low‐valence polysulfides.The arrayed molecular brush design enabled the regulation of local current density and ion flux,and considerably alleviated the growth of lithium dendrites,thus promoting the smooth deposition of Li metal.Consequently,a battery constructed with the SA‐BC/SA‐C separator showed a good discharge capacity of 685.2 mAh g−1 over 300 cycles(a capacity decay of 0.026%per cycle)at 2 C and 60°C.This“three‐in‐one”multifunctional separator design strategy constitutes a new path forward for overcoming the safety problems of LSBs.展开更多
Benefiting from the environmental friendliness of organic electrodes and the high security of aqueous electrolyte,an all-organic aqueous potassium dual-ion full battery(APDIB) was assembled with 21 M potassium bis(flu...Benefiting from the environmental friendliness of organic electrodes and the high security of aqueous electrolyte,an all-organic aqueous potassium dual-ion full battery(APDIB) was assembled with 21 M potassium bis(fluoroslufonyl)imide(KFSI) water-in-salt as the electrolyte.The APDIB could deliver a reversible capacity of around 50 mAh g^(-1) at 200 mA g^(-1)(based on the weight of total active materials),a long cycle stability over 900 cycles at 500 mA g^(-1) and a high coulombic efficiency of 98.5%.The reaction mechanism of APDIB during the charge/discharge processes is verified:the FSI-could associate/disassociate with the nitrogen atom in the polytriphenylamine(PTPAn) cathode,while the K^(+) could react with C=O bonds in the 3,4,9,10-perylenetetracarboxylic diimide(PTCDI) anode reversibly.Our work contributes toward the understanding the nature of water-into-salt electrolyte and successfully constructed all-organic APDIB.展开更多
The safety and antimicrobial efficacy of Ethyl lauroyl arginate HCI while using as a preservative have been introduced. Meanwhile the antimicrobial mechanism, the minimal inhibitory concentration and the stability to ...The safety and antimicrobial efficacy of Ethyl lauroyl arginate HCI while using as a preservative have been introduced. Meanwhile the antimicrobial mechanism, the minimal inhibitory concentration and the stability to heat and pH range of ethyl lauroyl arginate HCI have been introduced. The new preservatives have been developed, they are the compounds containing ethyl lauroyl arginate HCI. The high efficacy of antimicrobial of Ethyl lauroyl arginate HCI series products ha been described while added into the formulations of amino acid shampoo and toner. It has been proved that ethyl lauroyl arginate HCI series products can be the optimized option for the alternative of traditional preservatives for cosmetic products.展开更多
In order to solve effectively the problems of deep mining with safety and high efficiency, the multi- pie factors influencing the stability of deep rock roadway and technical problems are analyzed in the light of the ...In order to solve effectively the problems of deep mining with safety and high efficiency, the multi- pie factors influencing the stability of deep rock roadway and technical problems are analyzed in the light of the severe situation of effective mining for deep coal resource, and the stability control methods for deep rock road- way are provided, which are based on the idea of combined support with separated steps and integral control of surrounding rock of deep rock roadway. The suggested methods were applied to a deep rock roadway with -648 m depth in Gubei coal mine of Huainan area. The field test was carried out and the in-situ monitoring was imple- mented, and the support scheme was optimized and adjusted to improve the stability of the surrounding rock of the roadway based on the feedback analysis. The results showed that the stability can be improved greatly by the provided control methods tbr deep roadway. The present methods lbr stability control of deep rock roadway can be used to other deep rock roadways with the similar conditions.展开更多
As their Liþtransference number(tLiþ),ionic conductivity,and safety are all high,polymer electrolytes play a vital role in overcoming uncontrollable lithium dendrites and low energy density in Li metal batte...As their Liþtransference number(tLiþ),ionic conductivity,and safety are all high,polymer electrolytes play a vital role in overcoming uncontrollable lithium dendrites and low energy density in Li metal batteries(LMBs).We therefore synthesized a three-dimensional(3D)semi-interpenetrating network-based single-ion-conducting fiber–gel composite polymer electrolyte(FGCPE)via an electrospinning,initiation,and in situ polymerization method.The FGCPE provides high ionic conductivity(1.36 mS cm^(-1)),high t_(Li+)(0.92),and a high electrochemical stability window(up to 4.84 V).More importantly,the aromatic heterocyclic structure of the biphenyl in the nanofiber membrane promotes the carbonization of the system(the limiting oxygen index value of the nanofiber membrane reaches 41%),giving it certain flame-retardant properties and solving the source-material safety issue.Due to the in situ method,the observable physical interface between electrodes and electrolytes is virtually eliminated,yielding a compact whole that facilitates rapid kinetic reactions in the cell.More excitingly,the LFP/FGCPE/Li cell displays outstanding cycling stability,with a capacity retention of 91.6%for 500 cycles even at 10C.We also test the FGCPE in high-voltage NMC532/FGCPE/Li cells and pouch cells.This newly designed FGCPE exhibits superior potential and feasibility for promoting the development of LMBs with high energy density and safety.展开更多
The separator plays an important part in battery safety and performance.Polyolefin separators are widely used in commercial Lithium-ion batteries(LIBs),owing to their excellent properties,but they suffer from serious ...The separator plays an important part in battery safety and performance.Polyolefin separators are widely used in commercial Lithium-ion batteries(LIBs),owing to their excellent properties,but they suffer from serious thermal shrinkage and poor electrolyte wettability.Thus,a multilayer separator(ASPESA)is developed by coating two thin layers of low-density polyethylene(LDPE)and Al_(2)O_(3)on both sides of a polyethylene membrane using a facile and environmentally friendly casting technique.The ASPESA separator demonstrates a shutdown function at 120℃and shows enhanced thermal stability under 185℃,with a small thermal shrinkage of 1%.Meanwhile,the LDPE and Al_(2)O_(3)layers can improve the electrolyte wettability and electrolyte uptake(407.23%).The multilayer ASPESA separator delivers an excellent cycle performance in LiFePO_(4)||Li cells with a discharge capacity of 144.5 mAh g^(-1)after 900 cycles,with a high-capacity retention of 98.9%(compared to the 5th cycle).Therefore,the multilayer ASPESA separator has great utilization potential as a high-safety separator in LIBs.展开更多
Separators play a critical role in lithium-ion batteries.However,the restrictions of thermal stability and inferior electrical performance in commercial polyolefin separators significantly limit their applications und...Separators play a critical role in lithium-ion batteries.However,the restrictions of thermal stability and inferior electrical performance in commercial polyolefin separators significantly limit their applications under harsh conditions.Here,we report a cellulose-assisted self-assembly strategy to construct a cellulose-based separator massively and continuously.With an ultrahigh ionic conductivity in electrolytes of 3.7 mS·cm^(-1) and the ability to regulate ion transport,the obtained separator is a promising alternative for high-performance lithium-ion batteries.In addition,integrated with high thermal stability,the cellulose-based separator endows batteries with high safety at high temperatures,greatly expanding the application scenarios of energy storage devices in extreme environments.展开更多
基金financially supported by the National Key R&D Program of China(2016YFB0100304)the National Natural Science Foundation of China(21776098)+1 种基金Guangdong Natural Science Funds for Distinguished Young Scholar(2017A030306022)the Guangzhou Technology Project(202002030164)。
文摘Lithium-ion batteries(LIBs)are presently dominant mobile power sources due to their high energy density,long lifespan,and low self-discharging rates.The safety of LIBs has been concerned all the time and become the main problem restricting the development of high energy density LIBs.As a significant part of LIBs,the properties of separators have a significant effect on the capacity and performances of batteries and play an important role in the safety of LIBs.In recent years,researchers devoted themselves to the development of various multi-functional safe separators from different views of methods,materials,and practical requirements.In this review,we mainly focus on the recent progress in the development of high-safety separators with high thermal stability,good lithium dendritic resistance,high mechanical strength and novel multifunction for high-safety LIBs and have in-depth discussions regarding the separator's significant contribution to enhance the safety and performances of the batteries.Furthermore,the future directions and challenges of separators for the next-generation high-safety and high energy density rechargeable lithium batteries are also provided.
基金supported by National Hi-tech Research and Development Program of China (863 Program,No.2005AA501020)National Basic Research and Development Program of China (973 Program,No.2007CB209707).
文摘In order to improve the drivability and energy efficiency of electric vehicle (EV), more and more batteries are connected in series with high voltage which makes it necessary to monitor the electric parameters of high voltage system (HVS) to ensure the high voltage safety. A high voltage safety management system is developed to solve this critical issue. Several key electric parameters including pre-charge, contact resistance, insulation resistance and remaining capacity are monitored and analyzed based on the presented equivalent models. An electronic unit called high voltage safety controller is developed. By the help of hardware-in-loop system, the equivalent models integrated in the high voltage safety controller are validated and the on-line electric parameters monitor strategy is discussed. The real vehicle experiment results indicate that the high voltage safety management system designed is suitable for EV application.
基金supported by the Natural Science Foundation of Science and Technology Department of Sichuan Province, China (23NSFSC6224)the Higher Education Talent Training Quality and Teaching Reform Project of Sichuan Province, China (JG2021-1098)+3 种基金the Industry-university cooperation collaborative education project of the Ministry of Education, China (221001359095358 and 220604738021813)the Development Research Center of Sichuan Cuisine (CC21Z02)the “Sichuang Fusion” Youth Red Dream Building Project of Chengdu University,China (cxcysc2022001)the Solid-state Fermentation Resource Utilization Key Laboratory of Sichuan Province (2020GTJ002)。
文摘A composite separator of SiC/PVDF-HFP was synthesized for lithium-ion batteries with high thermal and mechanical stabilities.Benefiting from the nanoscale,high hardness,and melting point of SiC,SiC/PVDFHFP with highly uniform microstructure was obtained.This polarization caused by barrier penetration was significantly restrained.Due to the Si-F bond between SiC and PVDF-HFP,the structural stability has been obviously enhanced,which could suppress the growth of lithium(Li) dendrite.Furthermore,some 3D reticulated Si nanowires are found on the surface of Li anode,which also greatly inhibit Li dendrites and result in irregular flakes of Li metal.Especially,the shrinkage of 6% SiC/PVDF-HFP at 150℃ is only 5%,which is notably lower than those of PVDF-HFP and Celgard2500.The commercial LiFePO_(4) cell assembled with 6% SiC/PVDF-HFP possesses a specific capacity of 157.8 mA h g^(-1) and coulomb efficiency of 98% at 80℃.In addition,the tensile strength and modulus of 6% SiC/PVDF-HFP could reach 14.6 and 562 MPa,respectively.And a small deformation(1000 nm) and strong deformation recovery are obtained under a high additional load(2.3 mN).Compared with PVDF-HFP and Celgard2500,the symmetric Li cell assembled with 6% SiC/PVDF-HFP has not polarized after 900 cycles due to its excellent mechanical stabilities.This strategy provides a feasible solution for the composite separator of high-safety batteries with a high temperature and impact resistance.
基金supported by the National Natural Science Youth Fund of China(52302247)the Natural Youth Science Foundation of Hunan Province(2022JJ40070)。
文摘Since the advent of the solid-state batteries,employing solid polymer electrolytes(SPEs)to replace routine flammable liquid electrolytes is regarded to be one of the most promising solutions in pursing highenergy-density battery systems.SPEs with superior thermal stability,good processability,and high mechanical modulus obtain increasing attentions.However,SPE-based batteries are not impenetrable due to their decomposition and combustibility under extreme conditions.Researchers believe incorporating appropriate flame-retardant additives/solvents/fragments into SPEs can intrinsically reduce their flammability to solve the battery safety issues.In this review,the recent research progress of incombustible SPEs,with special emphasis on flame-retardant structural design,is summarized.Specifically,a brief introduction of flame-retardant mechanism,evaluation index for safety of SPEs,and a detailed overview of the latest advances on diverse-types SPEs in various battery systems are highlighted.The deep insight into thermal ru naway process,the free-standing incombustible GPEs,and the ratio nal design of pouch cell structures may be the main directions to motivate revolutionary next-generation for safety batteries.
基金supported by the National Natural Science Foundation of China(No.51972132,51772116 and 52002141)Program for HUST Academic Frontier Youth Team(2016QYTD04)
文摘With the rapid development of lithium-ion batteries(LIBs),safety problems are the great obstacles that restrict large-scale applications of LIBs,especially for the high-energy-density electric vehicle industry.Developing component materials(e.g.,cathode,anode,electrolyte,and separator)with high thermal stability and intrinsic safety is the ultimate solution to improve the safety of LIBs.Separators are crucial components that do not directly participate in electrochemical reactions during charging/discharging processes,but play a vital role in determining the electrochemical performance and safety of LIBs.In this review,the recent advances on traditional separators modified with ceramic materials and multifunctional separators ranging from the prevention of the thermal runaway to the flame retardant are summarized.The component–structure–performance relationship of separators and their effect on the comprehensive performance of LIBs are discussed in detail.Furthermore,the research challenges and future directions toward the advancement in separators for high-safety LIBs are also proposed.
基金This work was supported by the National Natural Science Foundation of China(51563002,52101243)the“100-level”Innovative Talents Project of Guizhou Province China([2016]5653)+1 种基金Natural Science Foundation of Guangdong Province(2020A1515010886)the Science and Technology Planning Project of Guangzhou(202102010373).
文摘Herein,a flexible ZIF-67/PAN hybrid membrane was successfully prepared by the incorporation of ZIF-67 nanoparticles and PAN nanofibers through electrospinning method.The hybrid membrane presented tomatoes on sticks structures with one single PAN fiber stringing series of ZIF-67 nanoparticles.The morphology,electrolyte wettability,heat resistance,flexibility,and electrochemical properties of the electrospun ZIF-67/PAN membranes were discussed.Among the membranes prepared with different percentage of ZIF-67,the 30% ZIF-67/PAN membrane exhibited outstanding heat shrinkage resistance(remained intact at 200℃ for 1 h),excellent electrolyte uptake(556.39%),wide electrochemical window(~5.25 V)and high ionic conductivity(2.98 mS cm^(−1)).When used as lithium-ion batteries(LIBs)separators,the cells assembled by 30% ZIF-67/PAN membrane presented excellent rate capacity and high capacity retention of 86.9% after 300 cycles at 1C.More importantly,the cells assembled with ZIF-67/PAN membranes repeated bent for 1000 times also exhibited high rate performance and maintained capacity retention of 92% after 100 cycles at 1 C.The characterization and the electrochemical testing suggest the electrospinning prepared ZIF-67/PAN flexible membranes can be expected to be used as potential separator for advanced batteries with high safety and high performance.
基金National Key R&D Program of China,Grant/Award Number:2022YFE0206500。
文摘The safety problems encountered with lithium–sulfur batteries(LSBs)hinder their development for practical applications.Herein,a highly thermally conductive separator was constructed by cross‐weaving super‐aligned carbon nanotubes(SA‐C)on super‐aligned boron nitride@carbon nanotubes(SA‐BC)to create a composite film(SA‐BC/SA‐C).This separator was used to fabricate safe LSBs with improved electrochemical performance.The highly aligned separator structure created a uniform thermal field that could rapidly dissipate heat accumulated during continuous operation due to internal resistance,which prevented the development of extremely high temperatures.The array of boron nitride nanosheets endowed the composite separator with a large number of adsorption sites,while the highly graphitized carbon nanotube skeleton accelerated the catalytic conversion of high‐valence polysulfides into low‐valence polysulfides.The arrayed molecular brush design enabled the regulation of local current density and ion flux,and considerably alleviated the growth of lithium dendrites,thus promoting the smooth deposition of Li metal.Consequently,a battery constructed with the SA‐BC/SA‐C separator showed a good discharge capacity of 685.2 mAh g−1 over 300 cycles(a capacity decay of 0.026%per cycle)at 2 C and 60°C.This“three‐in‐one”multifunctional separator design strategy constitutes a new path forward for overcoming the safety problems of LSBs.
基金financially supported by the National Natural Science Foundation of China (Nos.51922038 and 51672078)the Hunan Outstanding Youth Talents(No.2019JJ20005)+1 种基金Hunan Provincial Natural Science Foundation of China(2019JJ40031)the Fundamental Research Funds for the Central Universities(531119200156)。
文摘Benefiting from the environmental friendliness of organic electrodes and the high security of aqueous electrolyte,an all-organic aqueous potassium dual-ion full battery(APDIB) was assembled with 21 M potassium bis(fluoroslufonyl)imide(KFSI) water-in-salt as the electrolyte.The APDIB could deliver a reversible capacity of around 50 mAh g^(-1) at 200 mA g^(-1)(based on the weight of total active materials),a long cycle stability over 900 cycles at 500 mA g^(-1) and a high coulombic efficiency of 98.5%.The reaction mechanism of APDIB during the charge/discharge processes is verified:the FSI-could associate/disassociate with the nitrogen atom in the polytriphenylamine(PTPAn) cathode,while the K^(+) could react with C=O bonds in the 3,4,9,10-perylenetetracarboxylic diimide(PTCDI) anode reversibly.Our work contributes toward the understanding the nature of water-into-salt electrolyte and successfully constructed all-organic APDIB.
文摘The safety and antimicrobial efficacy of Ethyl lauroyl arginate HCI while using as a preservative have been introduced. Meanwhile the antimicrobial mechanism, the minimal inhibitory concentration and the stability to heat and pH range of ethyl lauroyl arginate HCI have been introduced. The new preservatives have been developed, they are the compounds containing ethyl lauroyl arginate HCI. The high efficacy of antimicrobial of Ethyl lauroyl arginate HCI series products ha been described while added into the formulations of amino acid shampoo and toner. It has been proved that ethyl lauroyl arginate HCI series products can be the optimized option for the alternative of traditional preservatives for cosmetic products.
文摘In order to solve effectively the problems of deep mining with safety and high efficiency, the multi- pie factors influencing the stability of deep rock roadway and technical problems are analyzed in the light of the severe situation of effective mining for deep coal resource, and the stability control methods for deep rock road- way are provided, which are based on the idea of combined support with separated steps and integral control of surrounding rock of deep rock roadway. The suggested methods were applied to a deep rock roadway with -648 m depth in Gubei coal mine of Huainan area. The field test was carried out and the in-situ monitoring was imple- mented, and the support scheme was optimized and adjusted to improve the stability of the surrounding rock of the roadway based on the feedback analysis. The results showed that the stability can be improved greatly by the provided control methods tbr deep roadway. The present methods lbr stability control of deep rock roadway can be used to other deep rock roadways with the similar conditions.
基金The authors acknowledge the support from National Outstanding Youth Science Fund(NO.52222314)CNPC Innovation Found(2021DQ02-1001)+1 种基金Liao Ning Revitalization Talents Program(XLYC1907144)Xinghai Talent Cultivation Plan(X20200303).
文摘As their Liþtransference number(tLiþ),ionic conductivity,and safety are all high,polymer electrolytes play a vital role in overcoming uncontrollable lithium dendrites and low energy density in Li metal batteries(LMBs).We therefore synthesized a three-dimensional(3D)semi-interpenetrating network-based single-ion-conducting fiber–gel composite polymer electrolyte(FGCPE)via an electrospinning,initiation,and in situ polymerization method.The FGCPE provides high ionic conductivity(1.36 mS cm^(-1)),high t_(Li+)(0.92),and a high electrochemical stability window(up to 4.84 V).More importantly,the aromatic heterocyclic structure of the biphenyl in the nanofiber membrane promotes the carbonization of the system(the limiting oxygen index value of the nanofiber membrane reaches 41%),giving it certain flame-retardant properties and solving the source-material safety issue.Due to the in situ method,the observable physical interface between electrodes and electrolytes is virtually eliminated,yielding a compact whole that facilitates rapid kinetic reactions in the cell.More excitingly,the LFP/FGCPE/Li cell displays outstanding cycling stability,with a capacity retention of 91.6%for 500 cycles even at 10C.We also test the FGCPE in high-voltage NMC532/FGCPE/Li cells and pouch cells.This newly designed FGCPE exhibits superior potential and feasibility for promoting the development of LMBs with high energy density and safety.
基金supported by Jilin Province Science and Technology Department major science and technology project(grant numbers 20220301004GX,20220301005GX)Key Subject Construction of Physical Chemistry of Northeast Normal University,the Education Department of Jilin Province science and technology project of“13th Five-Year”(grant number JJKH20200764KJ)the Fundamental Research Funds for the Central Universities(grant number 135113014).
文摘The separator plays an important part in battery safety and performance.Polyolefin separators are widely used in commercial Lithium-ion batteries(LIBs),owing to their excellent properties,but they suffer from serious thermal shrinkage and poor electrolyte wettability.Thus,a multilayer separator(ASPESA)is developed by coating two thin layers of low-density polyethylene(LDPE)and Al_(2)O_(3)on both sides of a polyethylene membrane using a facile and environmentally friendly casting technique.The ASPESA separator demonstrates a shutdown function at 120℃and shows enhanced thermal stability under 185℃,with a small thermal shrinkage of 1%.Meanwhile,the LDPE and Al_(2)O_(3)layers can improve the electrolyte wettability and electrolyte uptake(407.23%).The multilayer ASPESA separator delivers an excellent cycle performance in LiFePO_(4)||Li cells with a discharge capacity of 144.5 mAh g^(-1)after 900 cycles,with a high-capacity retention of 98.9%(compared to the 5th cycle).Therefore,the multilayer ASPESA separator has great utilization potential as a high-safety separator in LIBs.
基金supported by the Strategic Priority Research Program of the Chinese Academy of Sciences(No.XDB0450402)the National Key Research and Development Program of China(Nos.2018YFE0202201 and 2021YFA0715700)+3 种基金the National Natural Science Foundation of China(Nos.22293044,U1932213,51732011,22105194,and 92163130)the Major Basic Research Project of Anhui Province(No.2023z04020009)the New Cornerstone Investigator Programcarried out at the USTC Center for Micro and Nanoscale Research and Fabrication。
文摘Separators play a critical role in lithium-ion batteries.However,the restrictions of thermal stability and inferior electrical performance in commercial polyolefin separators significantly limit their applications under harsh conditions.Here,we report a cellulose-assisted self-assembly strategy to construct a cellulose-based separator massively and continuously.With an ultrahigh ionic conductivity in electrolytes of 3.7 mS·cm^(-1) and the ability to regulate ion transport,the obtained separator is a promising alternative for high-performance lithium-ion batteries.In addition,integrated with high thermal stability,the cellulose-based separator endows batteries with high safety at high temperatures,greatly expanding the application scenarios of energy storage devices in extreme environments.