The phase constitution in mixed Gd2O3 and B4C by sintering in graphite tube furnace at the temperature of 100~1489 ℃ in argon atmosphere was studied by means of XRD and TG-DTA. The results show that the impurity C r...The phase constitution in mixed Gd2O3 and B4C by sintering in graphite tube furnace at the temperature of 100~1489 ℃ in argon atmosphere was studied by means of XRD and TG-DTA. The results show that the impurity C reacts with O in the B4C at the temperature of 367~458 ℃. When the temperature is 800 ℃, Gd2O3 reacts with B4C, and the reaction products include GdB6, GdB4, GdBO3, GdBC and B. GdBC changes into GdB4 at 1200 ℃. When the temperature is 1470 ℃, GdB6 is obtained by the reaction of GdB4 with elemental B. The content of GdB6 is increasing with the prolonging time.展开更多
Using ball milling and single direction pressing, we can produce high performance NdFeB sintered magnets. The oxygen content of sintered magnets can be controlled under 1500xl0^-6 and the magnetic performance can be i...Using ball milling and single direction pressing, we can produce high performance NdFeB sintered magnets. The oxygen content of sintered magnets can be controlled under 1500xl0^-6 and the magnetic performance can be improved by using low oxygen processing. The high preformance NdFeB sintered magnets with Br=(1.4 ± 0.2)T, iHc>796 kA/m and (BH)max=(390± 16) kJ/m^3, have been batch produced.展开更多
Polycrystalline cubic boron nitride(Pc BN)compacts,using the mixture of submicron cubic boron nitride(c BN)powder and hexagonal BN(h BN)powder as starting materials,were sintered at pressures of 6.5–10.0 GPa and temp...Polycrystalline cubic boron nitride(Pc BN)compacts,using the mixture of submicron cubic boron nitride(c BN)powder and hexagonal BN(h BN)powder as starting materials,were sintered at pressures of 6.5–10.0 GPa and temperature of1750℃without additives.In this paper,the sintering behavior and mechanical properties of samples were investigated.The XRD patterns of samples reveal that single cubic phase was observed when the sintering pressure exceeded 7.5 GPa and h BN contents ranged from 20 vol.%to 24 vol.%,which is ascribed to like-internal pressure generated at grain-to-grain contact under high pressure.Transmission electron microscopy(TEM)analysis shows that after high pressure and high temperature(HPHT)treatments,the submicron c BN grains abounded with high-density nanotwins and stacking faults,and this contributed to the outstanding mechanical properties of Pc BN.The pure bulk Pc BN that was obtained at 7.7 GPa/1750℃possessed the outstanding properties,including a high Vickers hardness(~61.5 GPa),thermal stability(~1290℃in air),and high density(~3.46 g/cm^(3)).展开更多
In order to widen the application of microcrystalline magnesite,the thermal decomposition behavior of the microcrystalline magnesite in Sichuan and Tibet area was firstly studied by thermogravimetric analysis. Then th...In order to widen the application of microcrystalline magnesite,the thermal decomposition behavior of the microcrystalline magnesite in Sichuan and Tibet area was firstly studied by thermogravimetric analysis. Then the effects of the calcination temperature,calcination time and particle size on the preparation of active Mg O from microcrystalline magnesite were studied by orthogonal experimental design. At last,high purity sintered magnesia was prepared by two-step calcination,meanwhile the effects of the light burning temperature,particle size of the light-burned Mg O powder,molding pressure and the hydration rate of light-burned Mg O powder on the properties of high purity sintered magnesia were studied.The results show that:( 1) the calcination temperature has the greatest influence on the activity of light-burned MgO,followed by the holding time and the particle size;the optimal process of light burning for preparing active MgO is the microcrystalline magnesite with particle size of 1-0. 5 mm heat-treating at 700 ℃ for 2 h; under these conditions,the microcrystalline magnesite decomposes completely; the average grain size of the obtained product is about 21. 4 nm,and its activity of CAA is20. 16 s;( 2) the effect of the light burning temperature on the density of high purity sintered magnesia is not obvious; the fineness of the light burning Mg O powder and molding pressure help to increase the density of sintered magnesia; the lower the hydration rate of the lightburned Mg O, the higher the density of the sintered magnesia; the high-purity sintered magnesite withw( MgO) ≥98% and bulk density≥3. 40 g/cm;can be prepared by the two-step calcination; the grains are fine with size of 30-200 μm and the impurity at grain boundaries is little.展开更多
High speed sintering,a new powder-bed fusion additive manufacturing technology,utilizes infrared lights(IR)to intensely heat and melt polymer powders.The presence of defects such as porosity,which is associated with p...High speed sintering,a new powder-bed fusion additive manufacturing technology,utilizes infrared lights(IR)to intensely heat and melt polymer powders.The presence of defects such as porosity,which is associated with particle coalescence,is highly dependdent on the level of energy input.This study investigate the influcence of energy input on porosity and its subsequent effects on the mechanical properties and microstructures of PEBA parts.The parts were manufactured with a variety of lamp powers,resulting in a range of energy input levels spanning from low to high.Subsequebtly,they underwent testing using Archimedes’method,followed by tensile testing.The porosity,mechanical characteristics,and energy input exhibit a strong correlation;inadequate energy input was the primary cause of pore formation.Using the reduced IR light power resulted in the following outcomes:porosity,ultimate tensile strength,and elongation of 1.37%,7.6 MPa,and 194.2%,respectively.When the energy input was further increased,the porosity was reduced to as low as 0.05%and the ultimate tensile strength and elongation were increased to their peak values of 233.8%and 9.1 MPa,respectively.展开更多
The high burn-up structure(HBS)is characterized by the grain size of 100-300 nm and a porosity of up to 20%,which is formed at the rim of the nuclear fuel pellet due to 2-3 times higher local burn-up during the in-pil...The high burn-up structure(HBS)is characterized by the grain size of 100-300 nm and a porosity of up to 20%,which is formed at the rim of the nuclear fuel pellet due to 2-3 times higher local burn-up during the in-pile irradiation.HBS is considered a new potential structure for high-performance fuels.However,it is difficult to prepare HBS by conventional sintering methods.In this study,flash sintering was used to prepare HBS using CeO_(2)as a surrogate for a preliminary investigation.A new experimental configuration for rapid sintering of CeO_(2)pellets was provided,in which the green body can be rapidly preheated and pressure-assisted by the induction heating electrodes.An insulated quartz tube was used as the die for the flash sintered samples,allowing the current to flow through the sample and providing a stable condition for applying an external pressure of approximately 5.3-7.0 MPa during flash sintering process.Using an initial electric field of 141 V cm-1 and holding for 1-7 min at the maximum current density of~98 mA mm^(-2),CeO_(2)ceramics with a grain size of 114-282 nm and a relative density of 75.4-99.7%were prepared.The densification and microstructure evolution behaviors during flash sintering in this new experimental configuration have been discussed in detail.This new experimental configuration may provide a promising approach for preparing UO_(2)ceramics and their HBS.展开更多
Pilbara blending iron ore powder (PB powder) is blending ores with good and poor quality iron ores, so how to use PB power effectively is a problem. The self-characteristics of PB powder and its single-components we...Pilbara blending iron ore powder (PB powder) is blending ores with good and poor quality iron ores, so how to use PB power effectively is a problem. The self-characteristics of PB powder and its single-components were studied respectively such as the macroscopic properties, microscopic properties, and high-temperature properties the behavior and effect in the sintering were mastered. Then based on the new ore-proportioning idea of iron ores sintering characteristics complementary, the principles on the effective use of PB powder were discussed, and was fur ther validated through the sintering pot test and industrial production. The results show that PB powder is composed of three kinds of iron ore, and the sintering characteristics of different iron ores are obviously discrepant. With the ore-proportioning optimization based on the iron ores sintering characteristics complementary, the proportion of PB iron ore powder can be increased to more than 45 %.展开更多
High-performance solid oxide fuel cell(SOFC) is in urgent need of high-quality electrolyte powders with high reactivity and chemical uniformity.Here,8 mol% Y_(2)O_(3) doped ZrO_(2)(YSZ) nano-powders were synthesized b...High-performance solid oxide fuel cell(SOFC) is in urgent need of high-quality electrolyte powders with high reactivity and chemical uniformity.Here,8 mol% Y_(2)O_(3) doped ZrO_(2)(YSZ) nano-powders were synthesized by an improved solid-state reaction method at ambient temperature,and were applied to the fabrication of SOFC electrolytes.YSZ nano-powders show average grain sizes of ^(2)0 nm and high dispersibility,which is comparable with or even better than some other chemical methods.Benefitting from their high reactivity,dense YSZ electrolytes(relative density of 97.9%) can be obtained at a relatively low sintering temperature of 1400℃.The optimized electrical conductivity reaches up to a high value of0.034 S/cm at 800 0C in air.The anode supported single cell with the construction of Ni-YSZ/YSZ/Sm_(0.2)Ce_(0.8)O_(2-δ)(SDC)/La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(LSCF) exhibits the peak power density of 0.827 W/cm^(2) at800℃ while taking wet H_(2) as fuels and ambient air as oxidants.展开更多
Because the formation behavior of primary slag which decomposed from complex calcium ferrite(SFCA-I and SFCA)is not quite clear,the migration behavior of CaO and Al_(2)O_(3) derived from high basicity or high alumina ...Because the formation behavior of primary slag which decomposed from complex calcium ferrite(SFCA-I and SFCA)is not quite clear,the migration behavior of CaO and Al_(2)O_(3) derived from high basicity or high alumina sinter is always worth studying.The reducibility of three representative sinter samples and the formation behavior of primary slag during reduction process were investigated via X-ray diffraction,scanning electron microscopy,and energy-dispersive spectroscopy characterization.The results show that the reducibility of high basicity sinter is superior to that of high alumina sinter.Minerals with poor reducibility like hercynite and brownmillerite and with large-grained particles like free alumina and silica form in sinters with basicity of 2.4 and Al_(2)O_(3) content of 4 wt.%,respectively.The appearance of these minerals can well explain the reduction stagnation phenomenon occurring in these sinter samples.The migration behavior of CaO and Al_(2)O_(3) during slag formation process is different.CaO can easily combine with SiO2 to form silicate phase or firstly form calcium-rich ferro-aluminate solid solution and then transform to silicate phase,while Al_(2)O_(3) firstly combines with CaO and FeO to form solid solution and then,gradually combines with SiO2 to form calcium aluminum silicate phase.展开更多
文摘The phase constitution in mixed Gd2O3 and B4C by sintering in graphite tube furnace at the temperature of 100~1489 ℃ in argon atmosphere was studied by means of XRD and TG-DTA. The results show that the impurity C reacts with O in the B4C at the temperature of 367~458 ℃. When the temperature is 800 ℃, Gd2O3 reacts with B4C, and the reaction products include GdB6, GdB4, GdBO3, GdBC and B. GdBC changes into GdB4 at 1200 ℃. When the temperature is 1470 ℃, GdB6 is obtained by the reaction of GdB4 with elemental B. The content of GdB6 is increasing with the prolonging time.
文摘Using ball milling and single direction pressing, we can produce high performance NdFeB sintered magnets. The oxygen content of sintered magnets can be controlled under 1500xl0^-6 and the magnetic performance can be improved by using low oxygen processing. The high preformance NdFeB sintered magnets with Br=(1.4 ± 0.2)T, iHc>796 kA/m and (BH)max=(390± 16) kJ/m^3, have been batch produced.
文摘Polycrystalline cubic boron nitride(Pc BN)compacts,using the mixture of submicron cubic boron nitride(c BN)powder and hexagonal BN(h BN)powder as starting materials,were sintered at pressures of 6.5–10.0 GPa and temperature of1750℃without additives.In this paper,the sintering behavior and mechanical properties of samples were investigated.The XRD patterns of samples reveal that single cubic phase was observed when the sintering pressure exceeded 7.5 GPa and h BN contents ranged from 20 vol.%to 24 vol.%,which is ascribed to like-internal pressure generated at grain-to-grain contact under high pressure.Transmission electron microscopy(TEM)analysis shows that after high pressure and high temperature(HPHT)treatments,the submicron c BN grains abounded with high-density nanotwins and stacking faults,and this contributed to the outstanding mechanical properties of Pc BN.The pure bulk Pc BN that was obtained at 7.7 GPa/1750℃possessed the outstanding properties,including a high Vickers hardness(~61.5 GPa),thermal stability(~1290℃in air),and high density(~3.46 g/cm^(3)).
文摘In order to widen the application of microcrystalline magnesite,the thermal decomposition behavior of the microcrystalline magnesite in Sichuan and Tibet area was firstly studied by thermogravimetric analysis. Then the effects of the calcination temperature,calcination time and particle size on the preparation of active Mg O from microcrystalline magnesite were studied by orthogonal experimental design. At last,high purity sintered magnesia was prepared by two-step calcination,meanwhile the effects of the light burning temperature,particle size of the light-burned Mg O powder,molding pressure and the hydration rate of light-burned Mg O powder on the properties of high purity sintered magnesia were studied.The results show that:( 1) the calcination temperature has the greatest influence on the activity of light-burned MgO,followed by the holding time and the particle size;the optimal process of light burning for preparing active MgO is the microcrystalline magnesite with particle size of 1-0. 5 mm heat-treating at 700 ℃ for 2 h; under these conditions,the microcrystalline magnesite decomposes completely; the average grain size of the obtained product is about 21. 4 nm,and its activity of CAA is20. 16 s;( 2) the effect of the light burning temperature on the density of high purity sintered magnesia is not obvious; the fineness of the light burning Mg O powder and molding pressure help to increase the density of sintered magnesia; the lower the hydration rate of the lightburned Mg O, the higher the density of the sintered magnesia; the high-purity sintered magnesite withw( MgO) ≥98% and bulk density≥3. 40 g/cm;can be prepared by the two-step calcination; the grains are fine with size of 30-200 μm and the impurity at grain boundaries is little.
基金This work was financially supported by the National Natural Science Foundation of China(No.52275333).
文摘High speed sintering,a new powder-bed fusion additive manufacturing technology,utilizes infrared lights(IR)to intensely heat and melt polymer powders.The presence of defects such as porosity,which is associated with particle coalescence,is highly dependdent on the level of energy input.This study investigate the influcence of energy input on porosity and its subsequent effects on the mechanical properties and microstructures of PEBA parts.The parts were manufactured with a variety of lamp powers,resulting in a range of energy input levels spanning from low to high.Subsequebtly,they underwent testing using Archimedes’method,followed by tensile testing.The porosity,mechanical characteristics,and energy input exhibit a strong correlation;inadequate energy input was the primary cause of pore formation.Using the reduced IR light power resulted in the following outcomes:porosity,ultimate tensile strength,and elongation of 1.37%,7.6 MPa,and 194.2%,respectively.When the energy input was further increased,the porosity was reduced to as low as 0.05%and the ultimate tensile strength and elongation were increased to their peak values of 233.8%and 9.1 MPa,respectively.
基金The work was financially supported by the National Natural Science Foundation of China(Nos.51874023,U1860206)the Fundamental Research Funds for the Central Universities(No.FRF-TP-20-02B)the Recruitment Program of Global Experts.
文摘The high burn-up structure(HBS)is characterized by the grain size of 100-300 nm and a porosity of up to 20%,which is formed at the rim of the nuclear fuel pellet due to 2-3 times higher local burn-up during the in-pile irradiation.HBS is considered a new potential structure for high-performance fuels.However,it is difficult to prepare HBS by conventional sintering methods.In this study,flash sintering was used to prepare HBS using CeO_(2)as a surrogate for a preliminary investigation.A new experimental configuration for rapid sintering of CeO_(2)pellets was provided,in which the green body can be rapidly preheated and pressure-assisted by the induction heating electrodes.An insulated quartz tube was used as the die for the flash sintered samples,allowing the current to flow through the sample and providing a stable condition for applying an external pressure of approximately 5.3-7.0 MPa during flash sintering process.Using an initial electric field of 141 V cm-1 and holding for 1-7 min at the maximum current density of~98 mA mm^(-2),CeO_(2)ceramics with a grain size of 114-282 nm and a relative density of 75.4-99.7%were prepared.The densification and microstructure evolution behaviors during flash sintering in this new experimental configuration have been discussed in detail.This new experimental configuration may provide a promising approach for preparing UO_(2)ceramics and their HBS.
文摘Pilbara blending iron ore powder (PB powder) is blending ores with good and poor quality iron ores, so how to use PB power effectively is a problem. The self-characteristics of PB powder and its single-components were studied respectively such as the macroscopic properties, microscopic properties, and high-temperature properties the behavior and effect in the sintering were mastered. Then based on the new ore-proportioning idea of iron ores sintering characteristics complementary, the principles on the effective use of PB powder were discussed, and was fur ther validated through the sintering pot test and industrial production. The results show that PB powder is composed of three kinds of iron ore, and the sintering characteristics of different iron ores are obviously discrepant. With the ore-proportioning optimization based on the iron ores sintering characteristics complementary, the proportion of PB iron ore powder can be increased to more than 45 %.
基金supported by the Natural Science Foundation of Shandong Province (ZR2020KE033,ZR2020ME051,ZR2019BEM013,ZR2021ME253)the Shandong Science and Technology Program (2021TSGC1122)+1 种基金the Shandong Postdoctoral Innovation Foundation (201903069)the Zibo Key Research and Development Project (2021SNPT0004,2021SNCG0076)。
文摘High-performance solid oxide fuel cell(SOFC) is in urgent need of high-quality electrolyte powders with high reactivity and chemical uniformity.Here,8 mol% Y_(2)O_(3) doped ZrO_(2)(YSZ) nano-powders were synthesized by an improved solid-state reaction method at ambient temperature,and were applied to the fabrication of SOFC electrolytes.YSZ nano-powders show average grain sizes of ^(2)0 nm and high dispersibility,which is comparable with or even better than some other chemical methods.Benefitting from their high reactivity,dense YSZ electrolytes(relative density of 97.9%) can be obtained at a relatively low sintering temperature of 1400℃.The optimized electrical conductivity reaches up to a high value of0.034 S/cm at 800 0C in air.The anode supported single cell with the construction of Ni-YSZ/YSZ/Sm_(0.2)Ce_(0.8)O_(2-δ)(SDC)/La_(0.6)Sr_(0.4)Co_(0.2)Fe_(0.8)O_(3-δ)(LSCF) exhibits the peak power density of 0.827 W/cm^(2) at800℃ while taking wet H_(2) as fuels and ambient air as oxidants.
基金financially supported by the National Natural Science Foundation of China(Grant No.51634004).
文摘Because the formation behavior of primary slag which decomposed from complex calcium ferrite(SFCA-I and SFCA)is not quite clear,the migration behavior of CaO and Al_(2)O_(3) derived from high basicity or high alumina sinter is always worth studying.The reducibility of three representative sinter samples and the formation behavior of primary slag during reduction process were investigated via X-ray diffraction,scanning electron microscopy,and energy-dispersive spectroscopy characterization.The results show that the reducibility of high basicity sinter is superior to that of high alumina sinter.Minerals with poor reducibility like hercynite and brownmillerite and with large-grained particles like free alumina and silica form in sinters with basicity of 2.4 and Al_(2)O_(3) content of 4 wt.%,respectively.The appearance of these minerals can well explain the reduction stagnation phenomenon occurring in these sinter samples.The migration behavior of CaO and Al_(2)O_(3) during slag formation process is different.CaO can easily combine with SiO2 to form silicate phase or firstly form calcium-rich ferro-aluminate solid solution and then transform to silicate phase,while Al_(2)O_(3) firstly combines with CaO and FeO to form solid solution and then,gradually combines with SiO2 to form calcium aluminum silicate phase.