With the application of X-ray computed tomography(CT) technology of C80 high-strength concrete with polypropylene fiber at elevated temperatures, the microscopic damage evolution process observation and image buildi...With the application of X-ray computed tomography(CT) technology of C80 high-strength concrete with polypropylene fiber at elevated temperatures, the microscopic damage evolution process observation and image building could be obtained, based on the statistics theory and numerical analysis of the combination of concrete internal defects extension and evolution regularity of microscopic structure. The expermental results show that the defect rate has changed at different temperatures and can determine the concrete degradation threshold temperatures. Also, data analysis can help to establish the evolution equation between the defect rate and the effect of temperature damage, and identify that the addition of polypropylene fibers in the high strength concrete at high temperature can improve cracking resistance.展开更多
Electron microscope and electron diffraction have been used to study epitaxial crystallization of poly(ε-caprolactone)(PCL).on highly oriented film of isotactic polypropylene(iPP).The results obtained from bright fie...Electron microscope and electron diffraction have been used to study epitaxial crystallization of poly(ε-caprolactone)(PCL).on highly oriented film of isotactic polypropylene(iPP).The results obtained from bright field(BF)electron micrograph and electron diffraction indicate that the PCL can epitaxially grow on iPP substrate and form cross-hatched lamellar texture.The c axes of PCL are ±500 apart from the c axes of iPP. The contact planes of the two kinds of crystals are(010)of iPP and(100) of PCL,respectively.展开更多
The viscoelastic behavior of isotactic polypropylene with ultra-high molecular weight(UHPPH) and broad molecular weight distribution(MWD), produced in the presence of Ziegler-Natta catalyst, was investigated by means ...The viscoelastic behavior of isotactic polypropylene with ultra-high molecular weight(UHPPH) and broad molecular weight distribution(MWD), produced in the presence of Ziegler-Natta catalyst, was investigated by means of oscillatory rheometry at 180 and 200 ℃, whose loss modulus(G″) plots at 180 and 200 ℃ versus the natural logarithm of angular frequency(ω) present a pronounced maximum at 34.35 and 69.21 rad/s, respectively, and do not show a maximum peak at 0.01-100 rad/s for Ziegler-Natta catalyzing ethylene-propylene random copolymerization(PPR) with a conventional molecular weight and broad MWD. The fact indicates that the high molecular weight is responsible for a maximum peak of G″(ω) vs. lnω curves for UHPPH. This makes it possible to determine the plateau modulus(G 0_N) of UHPPH from a certain experimental temperature G″(ω) curve directly. For UHPPH, the G 0_N determined to be 4.28×10 5 and 3.62×10 5 Pa at 180 and 200 ℃, respectively, decreases with the increase of temperature and is independent of the molecular weight, which directly confirms reputation theoretical prediction that the G 0_N has no relation to the molecular weight.展开更多
Ultrafine full-vulcanized polybutadiene rubber(UFBR) with particle sizes of ca.50―100 nm were used for modifying mechanical and processing performances of polypropylene(PP) with PP-g-maleic anhydride(PP-g-MA) a...Ultrafine full-vulcanized polybutadiene rubber(UFBR) with particle sizes of ca.50―100 nm were used for modifying mechanical and processing performances of polypropylene(PP) with PP-g-maleic anhydride(PP-g-MA) as a compatibilizer for enhancing the interfacial adhesion between the two components.The morphology,dynamical rheology response and mechanical properties of the blends were characterized by means of SEM,rheometer and tensile test,respectively.The results show that the ternary PP/UFBR blends compatibilized with PP-g-MA possess rheological behaviors like highly branched PP,while no obvious strain hardening is observed in its control binary PP/UFBR blends,a low level of PP-g-MA in PP/UFBR blends can even endow the material with rheological characteristics of high melt strength materials like highly branched PP.The enhancement interfacial interaction between the UFBR particles and PP matrix accounting for the rheological behavior of compatibilized blends and effectiveness of PP-g-MA were proposed and proved.展开更多
Our work aims to evaluate a complete outlook of virgin high density polyethylene (HDPE) and polypropylene (PP) polyblends. Virgin PP of 20, 30 and 50 weight% is compounded with virgin HDPE. The properties like tensile...Our work aims to evaluate a complete outlook of virgin high density polyethylene (HDPE) and polypropylene (PP) polyblends. Virgin PP of 20, 30 and 50 weight% is compounded with virgin HDPE. The properties like tensile strength, flexural strength, Izod impact strength are examined. Scanning electron microscopy (SEM) and polarised light microscopy (PLM) are used to observe the surface and crystal morphology. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) tests verify the non compatibility of both polymers. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) techniques are used to study the thermal behaviour of composites. The results manifest co-occurring spherulites for polyblends;indicating the composite to be a physical blend of continuous and dispersed phases, but on the other hand PP improves the tensile and flexural properties of HDPE.展开更多
Apart from many advantages,High Strength Concrete(HSC)has disadvantages in terms of brittleness and poor resistance to fire.Various studies suggest that when polypropylene(PP)fibers are uniformly distributed within co...Apart from many advantages,High Strength Concrete(HSC)has disadvantages in terms of brittleness and poor resistance to fire.Various studies suggest that when polypropylene(PP)fibers are uniformly distributed within concrete,they play an active role in improving spalling resistance of concrete when exposed to elevated temperature while having no adverse effect on its mechanical properties.Therefore,there is a necessity to quantify the effect of the addition of polypropylene fibers in terms of the fiber dosage,the strength of the concrete,and the residual mechanical properties of fiber-reinforced concrete under exposure to high temperature from fire.The study was carried out on three water/cement(w/c)ratios(0.47,0.36&0.20)using granite aggregate for determining short term mechanical properties of Polypropylene fiber reinforced concrete in comparison to control mix.The experimental program includes 100×200 mm&150 x 300 mm cylinders with fiber volume of 0.5%,that were subjected to temperatures exposures of 400°C and 600°C for durations of 1 hour.From the results,it was observed that no significant enhancement in mechanical properties such as modulus of elasticity,Poisson’s ratio,split tensile strength,flexural strength,and compressive strength was observed at room temperature and at elevated temperatures.展开更多
An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is us...An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency.展开更多
Foamable high melt strength polypropylene (HMSPP) was prepared by grafting styrene (St) onto polypropylene (PP) and simultaneously introducing poly- dimethylsiloxane (PDMS) through a one-step melt extru- sion ...Foamable high melt strength polypropylene (HMSPP) was prepared by grafting styrene (St) onto polypropylene (PP) and simultaneously introducing poly- dimethylsiloxane (PDMS) through a one-step melt extru- sion process. The effect of PDMS viscosity on the foaming behavior of HMSPP was systematically investigated using supercritical CO2 as the foaming agent. The results show that the addition of PDMS has little effect on the grafting reaction of St and HMSPP exhibits enhanced elastic response and obvious strain hardening effect. Though the CO2 solubility of HMSPP with PDMS (PDMS-HMSPP) is lower than that of HMSPP without PDMS, especially for PDMS with low viscosity, the PDMS-HMSPP foams exhibit narrow cell size distribution and high cell density. The fracture morphology of PDMS-HMSPP shows that PDMS with low viscosity disperses more easily and uniformly in HMSPP matrix, leading to form small domains during the extrusion process. These small domains act as bubble nucleation sites and thus may be responsible for the improved foaming performance of HMSPP.展开更多
Isotactic polypropylene (iPP) has complex polymorphic structures. It can crystallize in at least four different modifications, termed α, β, γ and δ, under different crystallization conditions. The modifications of...Isotactic polypropylene (iPP) has complex polymorphic structures. It can crystallize in at least four different modifications, termed α, β, γ and δ, under different crystallization conditions. The modifications of iPP and their transitions have attracted much attention over the years. Studies on the relationships between the modifications and the possibility of formation of new modification are significantly important to investigation on the relationships between structure and properties of iPP. In this note,展开更多
The relationship between stiffness distribution and aeroelastic performance for a beam-frame model and a3-D model is investigated based on aeroelastic optimization of global stiffness design for high-aspect-ratio wing...The relationship between stiffness distribution and aeroelastic performance for a beam-frame model and a3-D model is investigated based on aeroelastic optimization of global stiffness design for high-aspect-ratio wings.The sensitivity information of wing spanwise stiffness distribution with respect to the twist angle at wing tip,the vertical displacement at wing tip,and the flutter speed are obtained using a sensitivity method for both models.Then the relationship between stiffness distribution and aeroelastic performance is summarized to guide the design procedure.By using the genetic/sensitivity-based hybrid algorithm,an optimal solution satisfying the strength,aeroelastic and manufacturing constraints is obtained.It is found that the summarized guidance is well consistent with the optimal solution,thus providing a valuable design advice with efficiency.The study also shows that the aeroelastic-optimization-based global stiffness design procedure can obtain the optimal solution under multiple constraints with high efficiency and precision,thereby having a strong application value in engineering.展开更多
The displacement feedback with time delay considered is introduced in order to enhance the vibration isolation performance of a high-static-low-dynamic stiffness(HSLDS) vibration isolator. Such feedback is detailedly ...The displacement feedback with time delay considered is introduced in order to enhance the vibration isolation performance of a high-static-low-dynamic stiffness(HSLDS) vibration isolator. Such feedback is detailedly analyzed from the viewpoint of equivalent damping. Firstly, the primary resonance of the controlled HSLDS vibration isolator subjected to a harmonic force excitation is obtained based on the multiple scales method and further verified by numerical integration. The stability of the primary resonance is subsequently investigated. Then, the equivalent damping is defined to study the effects of feedback gain and time delay on primary resonance. The condition of jump avoidance is obtained with the purpose of eliminating the adverse effects induced by jumps. Finally, the force transmissibility of the controlled HSLDS vibration isolator is defined to evaluate its isolation performance. It is shown that an appropriate choice of feedback parameters can effectively suppress the force transmissibility in resonant region and reduce the resonance frequency. Furthermore, a wider vibration isolation frequency bandwidth can be achieved compared to the passive HSLDS vibration isolator.展开更多
To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens...To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.展开更多
Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of therma...Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of thermal conductivity,apparent density,and compressive strength test on C80 high-strength concrete(HSC) in the presence and absence of polypropylene fibers under completely heated conditions.Only slight damages were detected below 400 ℃,whereas more and more severe deterioration events were expected when the temperature was above 500 ℃.The results show that the elevated temperature through infrared images generally exhibits an upward trend with increasing temperature,while the coefficient of thermal conductivity and apparent density decrease gradually.Additionally,the addition of polypropylene fibers with appropriate length,diameter,and quantity contributes to the improvement of the high-temperature resistance of HSC.展开更多
BACKGROUND Intrahepatic cholestasis of pregnancy(ICP)is a rare but severe complication for both the mother and the unborn child.The diagnosis is primarily based on elevated serum levels of bile acids.In a large ICP co...BACKGROUND Intrahepatic cholestasis of pregnancy(ICP)is a rare but severe complication for both the mother and the unborn child.The diagnosis is primarily based on elevated serum levels of bile acids.In a large ICP cohort,we here study in detail liver stiffness(LS)using transient elastography(TE),now widely used to noninvasively screen for liver cirrhosis within minutes.AIM To specifically explore LS in a large cohort of women with ICP compared to a control group with uncomplicated pregnancy.METHODS LS and hepatic steatosis marker controlled attenuation parameter(CAP)were measured in 100 pregnant women with ICP using TE(Fibroscan,Echosens,Paris,France)between 2010 and 2020.In 17 cases,LS could be measured postpartum.450 women before and 38 women after delivery with uncomplicated pregnancy served as control group.Routine laboratory,levels of bile acids and apoptosis marker caspase-cleaved cytokeratin 18 fragment(M30)were also measured.RESULTS Women with ICP had significantly elevated transaminases but normal gammaglutamyl transferase(GGT).Mean LS was significantly increased at 7.3±3.0 kPa compared to the control group at 6.2±2.3 kPa(P<0.0001).Postpartum LS decreased significantly in both groups but was still higher in ICP(5.8±1.7 kPa vs 4.2±0.9 kPa,P<0.0001),respectively.In ICP,LS was highly significantly correlated with levels of bile acids and M30 but not transaminases.No correlation was seen with GGT that even increased significantly after delivery in the ICP group.Bile acids were mostly correlated with the liver apoptosis marker M30,LS and levels of alanine aminotransferase,aspartate aminotransferase,and bilirubin.In multivariate analysis,LS remained the sole parameter that was independently associated with elevated bile acids.CONCLUSION In conclusion,LS is significantly elevated in ICP which is most likely due to toxic bile acid accumulation and hepatocyte apoptosis.In association with conventional laboratory markers,LS provides additional non-invasive information to rapidly identify women at risk for ICP.展开更多
This paper proposes a new technique which introduces the high-order single-step-β method(HSM)into the experimental study on the substructure pseudo-dynamic testing(SPDT).The technique is based on the proposed concept...This paper proposes a new technique which introduces the high-order single-step-β method(HSM)into the experimental study on the substructure pseudo-dynamic testing(SPDT).The technique is based on the proposed concept of equivalent shear stiffness which can meet the requirement of the HSM algorithm.A study is done to theoretically validate the technique by the numerical analysis of two-storey shear building structure,in comparison of the proposed substructure pseudo-dynamic testing algorithm with the central difference method(CDM).Then,a full-scale SPDT model,the three-storey frame-supported reinforced concrete short-limb masonry shear wall structure,is designed and tested to simulate the seismic response of the corresponding six-storey structure and verify the proposed force control HSM technique.Meanwhile,the techniques of both stiffness correction and force control are suggested to control algorithmic error,control error and measurement error.The results indicate that the force control HSM can be used in the full-scale multi-degree-of-freedom(MDOF)substructure pseudo-dynamic testing before descent segment of structure restoring force properties.展开更多
基金Funded by the National Natural Science Foundation of China(No.51278325)the Shanxi Province Natural Science Foundation(No.2011011024-2)
文摘With the application of X-ray computed tomography(CT) technology of C80 high-strength concrete with polypropylene fiber at elevated temperatures, the microscopic damage evolution process observation and image building could be obtained, based on the statistics theory and numerical analysis of the combination of concrete internal defects extension and evolution regularity of microscopic structure. The expermental results show that the defect rate has changed at different temperatures and can determine the concrete degradation threshold temperatures. Also, data analysis can help to establish the evolution equation between the defect rate and the effect of temperature damage, and identify that the addition of polypropylene fibers in the high strength concrete at high temperature can improve cracking resistance.
文摘Electron microscope and electron diffraction have been used to study epitaxial crystallization of poly(ε-caprolactone)(PCL).on highly oriented film of isotactic polypropylene(iPP).The results obtained from bright field(BF)electron micrograph and electron diffraction indicate that the PCL can epitaxially grow on iPP substrate and form cross-hatched lamellar texture.The c axes of PCL are ±500 apart from the c axes of iPP. The contact planes of the two kinds of crystals are(010)of iPP and(100) of PCL,respectively.
文摘The viscoelastic behavior of isotactic polypropylene with ultra-high molecular weight(UHPPH) and broad molecular weight distribution(MWD), produced in the presence of Ziegler-Natta catalyst, was investigated by means of oscillatory rheometry at 180 and 200 ℃, whose loss modulus(G″) plots at 180 and 200 ℃ versus the natural logarithm of angular frequency(ω) present a pronounced maximum at 34.35 and 69.21 rad/s, respectively, and do not show a maximum peak at 0.01-100 rad/s for Ziegler-Natta catalyzing ethylene-propylene random copolymerization(PPR) with a conventional molecular weight and broad MWD. The fact indicates that the high molecular weight is responsible for a maximum peak of G″(ω) vs. lnω curves for UHPPH. This makes it possible to determine the plateau modulus(G 0_N) of UHPPH from a certain experimental temperature G″(ω) curve directly. For UHPPH, the G 0_N determined to be 4.28×10 5 and 3.62×10 5 Pa at 180 and 200 ℃, respectively, decreases with the increase of temperature and is independent of the molecular weight, which directly confirms reputation theoretical prediction that the G 0_N has no relation to the molecular weight.
基金Supported by the National High Technology Research and Development Program of China(No.2002AA333040)the Special Funds of Science and Technology Bureau of Harbin for Hi-Tech Research,China(No.2007AA4BG140)
文摘Ultrafine full-vulcanized polybutadiene rubber(UFBR) with particle sizes of ca.50―100 nm were used for modifying mechanical and processing performances of polypropylene(PP) with PP-g-maleic anhydride(PP-g-MA) as a compatibilizer for enhancing the interfacial adhesion between the two components.The morphology,dynamical rheology response and mechanical properties of the blends were characterized by means of SEM,rheometer and tensile test,respectively.The results show that the ternary PP/UFBR blends compatibilized with PP-g-MA possess rheological behaviors like highly branched PP,while no obvious strain hardening is observed in its control binary PP/UFBR blends,a low level of PP-g-MA in PP/UFBR blends can even endow the material with rheological characteristics of high melt strength materials like highly branched PP.The enhancement interfacial interaction between the UFBR particles and PP matrix accounting for the rheological behavior of compatibilized blends and effectiveness of PP-g-MA were proposed and proved.
文摘Our work aims to evaluate a complete outlook of virgin high density polyethylene (HDPE) and polypropylene (PP) polyblends. Virgin PP of 20, 30 and 50 weight% is compounded with virgin HDPE. The properties like tensile strength, flexural strength, Izod impact strength are examined. Scanning electron microscopy (SEM) and polarised light microscopy (PLM) are used to observe the surface and crystal morphology. X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR) tests verify the non compatibility of both polymers. Differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) techniques are used to study the thermal behaviour of composites. The results manifest co-occurring spherulites for polyblends;indicating the composite to be a physical blend of continuous and dispersed phases, but on the other hand PP improves the tensile and flexural properties of HDPE.
文摘Apart from many advantages,High Strength Concrete(HSC)has disadvantages in terms of brittleness and poor resistance to fire.Various studies suggest that when polypropylene(PP)fibers are uniformly distributed within concrete,they play an active role in improving spalling resistance of concrete when exposed to elevated temperature while having no adverse effect on its mechanical properties.Therefore,there is a necessity to quantify the effect of the addition of polypropylene fibers in terms of the fiber dosage,the strength of the concrete,and the residual mechanical properties of fiber-reinforced concrete under exposure to high temperature from fire.The study was carried out on three water/cement(w/c)ratios(0.47,0.36&0.20)using granite aggregate for determining short term mechanical properties of Polypropylene fiber reinforced concrete in comparison to control mix.The experimental program includes 100×200 mm&150 x 300 mm cylinders with fiber volume of 0.5%,that were subjected to temperatures exposures of 400°C and 600°C for durations of 1 hour.From the results,it was observed that no significant enhancement in mechanical properties such as modulus of elasticity,Poisson’s ratio,split tensile strength,flexural strength,and compressive strength was observed at room temperature and at elevated temperatures.
基金supported by the National Natural Science Foundation of China(Nos.12122206 and 12272129)the Natural Science Foundation of Hunan Province of China(No.2024JJ4004)the Zhejiang Provincial Natural Science Foundation of China(No.LQ24A020006)。
文摘An easily stackable multi-layer quasi-zero-stiffness(ML-QZS)meta-structure is proposed to achieve highly efficient vibration isolation performance at low frequency.First,the distributed shape optimization method is used to design the unit cel,i.e.,the single-layer QZS(SL-QZS)meta-structure.Second,the stiffness feature of the unit cell is investigated and verified through static experiments.Third,the unit cells are stacked one by one along the direction of vibration isolation,and thus the ML-QZS meta-structure is constructed.Fourth,the dynamic modeling of the ML-QZS vibration isolation metastructure is conducted,and the dynamic responses are obtained from the equations of motion,and verified by finite element(FE)simulations.Finally,a prototype of the ML-QZS vibration isolation meta-structure is fabricated by additive manufacturing,and the vibration isolation performance is evaluated experimentally.The results show that the vibration isolation performance substantially enhances when the number of unit cells increases.More importantly,the ML-QZS meta-structure can be easily extended in the direction of vibration isolation when the unit cells are properly stacked.Hence,the ML-FQZS vibration isolation meta-structure should be a fascinating solution for highly efficient vibration isolation performance at low frequency.
基金Acknowledgements This work was financially supported by National Natural Science Foundation of China (Grant Nos. 21476085 and 21306047), Fundamental Research Funds for the Central Universities of China (22A201514016 222201314051).
文摘Foamable high melt strength polypropylene (HMSPP) was prepared by grafting styrene (St) onto polypropylene (PP) and simultaneously introducing poly- dimethylsiloxane (PDMS) through a one-step melt extru- sion process. The effect of PDMS viscosity on the foaming behavior of HMSPP was systematically investigated using supercritical CO2 as the foaming agent. The results show that the addition of PDMS has little effect on the grafting reaction of St and HMSPP exhibits enhanced elastic response and obvious strain hardening effect. Though the CO2 solubility of HMSPP with PDMS (PDMS-HMSPP) is lower than that of HMSPP without PDMS, especially for PDMS with low viscosity, the PDMS-HMSPP foams exhibit narrow cell size distribution and high cell density. The fracture morphology of PDMS-HMSPP shows that PDMS with low viscosity disperses more easily and uniformly in HMSPP matrix, leading to form small domains during the extrusion process. These small domains act as bubble nucleation sites and thus may be responsible for the improved foaming performance of HMSPP.
文摘Isotactic polypropylene (iPP) has complex polymorphic structures. It can crystallize in at least four different modifications, termed α, β, γ and δ, under different crystallization conditions. The modifications of iPP and their transitions have attracted much attention over the years. Studies on the relationships between the modifications and the possibility of formation of new modification are significantly important to investigation on the relationships between structure and properties of iPP. In this note,
基金supported by the National Natural Science Foundation of China (Nos.11302011,11372023, 11172025)
文摘The relationship between stiffness distribution and aeroelastic performance for a beam-frame model and a3-D model is investigated based on aeroelastic optimization of global stiffness design for high-aspect-ratio wings.The sensitivity information of wing spanwise stiffness distribution with respect to the twist angle at wing tip,the vertical displacement at wing tip,and the flutter speed are obtained using a sensitivity method for both models.Then the relationship between stiffness distribution and aeroelastic performance is summarized to guide the design procedure.By using the genetic/sensitivity-based hybrid algorithm,an optimal solution satisfying the strength,aeroelastic and manufacturing constraints is obtained.It is found that the summarized guidance is well consistent with the optimal solution,thus providing a valuable design advice with efficiency.The study also shows that the aeroelastic-optimization-based global stiffness design procedure can obtain the optimal solution under multiple constraints with high efficiency and precision,thereby having a strong application value in engineering.
基金Project(KYLX15_0256)supported by the Funding of Jiangsu Innovation Program for Graduate Education,ChinaProject(SV2015-KF-01)supported by the Open Project of State Key Laboratory for Strength and Vibration of Mechanical Structures,ChinaProject(XZA15003)supported by the Fundamental Research Funds for the Central Universities,China
文摘The displacement feedback with time delay considered is introduced in order to enhance the vibration isolation performance of a high-static-low-dynamic stiffness(HSLDS) vibration isolator. Such feedback is detailedly analyzed from the viewpoint of equivalent damping. Firstly, the primary resonance of the controlled HSLDS vibration isolator subjected to a harmonic force excitation is obtained based on the multiple scales method and further verified by numerical integration. The stability of the primary resonance is subsequently investigated. Then, the equivalent damping is defined to study the effects of feedback gain and time delay on primary resonance. The condition of jump avoidance is obtained with the purpose of eliminating the adverse effects induced by jumps. Finally, the force transmissibility of the controlled HSLDS vibration isolator is defined to evaluate its isolation performance. It is shown that an appropriate choice of feedback parameters can effectively suppress the force transmissibility in resonant region and reduce the resonance frequency. Furthermore, a wider vibration isolation frequency bandwidth can be achieved compared to the passive HSLDS vibration isolator.
基金National Natural Science Foundation of China Under Grant No.50878037
文摘To investigate the seismic performance of a composite frame comprised of steel reinforced ultra high-strength concrete (SRUHSC) columns and steel reinforced concrete (SRC) beams, six interior frame joint specimens were designed and tested under low cyclically lateral load. The effects of the axial load ratio and volumetric stirrup ratio were studied on the characteristics of the frame joint performance including crack pattern, failure mode, ductility, energy dissipation capacity, strength degradation and rigidity degradation. It was found that all joint specimens behaved in a ductile manner with flexural-shear failure in the joint core region while plastic hinges appeared at the beam ends. The ductility and energy absorption capacity of joints increased as the axial load ratio decreased and the volumetric stirIup ratio increased. The displacement ductility coefficient and equivalent damping coefficient of the joints fell between the corresponding coefficients of the steel reinforced concrete (SRC) frame joint and RC frame joint. The axial load ratio and volumetric stirrup ratio have less influence on the strength degradation and more influence on the stiffness degradation. The stiffness of the joint degrades more significantly for a low volumetric stirrup ratio and high axial load ratio. The characteristics obtained from the SRUHSC composite frame joint specimens with better seismic performance may be a useful reference in future engineering applications.
基金Funded by the National Natural Science Foundation of China(No.51278325)the Shanxi Province Natural Science Foundation(No.2011011024-2)
文摘Using the detection principle of infrared thermal imaging technique and the detection principle of DRH thermal conductivity tester laboratory,we investigated the infrared thermal image inspection,coefficient of thermal conductivity,apparent density,and compressive strength test on C80 high-strength concrete(HSC) in the presence and absence of polypropylene fibers under completely heated conditions.Only slight damages were detected below 400 ℃,whereas more and more severe deterioration events were expected when the temperature was above 500 ℃.The results show that the elevated temperature through infrared images generally exhibits an upward trend with increasing temperature,while the coefficient of thermal conductivity and apparent density decrease gradually.Additionally,the addition of polypropylene fibers with appropriate length,diameter,and quantity contributes to the improvement of the high-temperature resistance of HSC.
文摘BACKGROUND Intrahepatic cholestasis of pregnancy(ICP)is a rare but severe complication for both the mother and the unborn child.The diagnosis is primarily based on elevated serum levels of bile acids.In a large ICP cohort,we here study in detail liver stiffness(LS)using transient elastography(TE),now widely used to noninvasively screen for liver cirrhosis within minutes.AIM To specifically explore LS in a large cohort of women with ICP compared to a control group with uncomplicated pregnancy.METHODS LS and hepatic steatosis marker controlled attenuation parameter(CAP)were measured in 100 pregnant women with ICP using TE(Fibroscan,Echosens,Paris,France)between 2010 and 2020.In 17 cases,LS could be measured postpartum.450 women before and 38 women after delivery with uncomplicated pregnancy served as control group.Routine laboratory,levels of bile acids and apoptosis marker caspase-cleaved cytokeratin 18 fragment(M30)were also measured.RESULTS Women with ICP had significantly elevated transaminases but normal gammaglutamyl transferase(GGT).Mean LS was significantly increased at 7.3±3.0 kPa compared to the control group at 6.2±2.3 kPa(P<0.0001).Postpartum LS decreased significantly in both groups but was still higher in ICP(5.8±1.7 kPa vs 4.2±0.9 kPa,P<0.0001),respectively.In ICP,LS was highly significantly correlated with levels of bile acids and M30 but not transaminases.No correlation was seen with GGT that even increased significantly after delivery in the ICP group.Bile acids were mostly correlated with the liver apoptosis marker M30,LS and levels of alanine aminotransferase,aspartate aminotransferase,and bilirubin.In multivariate analysis,LS remained the sole parameter that was independently associated with elevated bile acids.CONCLUSION In conclusion,LS is significantly elevated in ICP which is most likely due to toxic bile acid accumulation and hepatocyte apoptosis.In association with conventional laboratory markers,LS provides additional non-invasive information to rapidly identify women at risk for ICP.
基金Sponsored by the National Natural Science Foundation of China(Grant No.50508012)
文摘This paper proposes a new technique which introduces the high-order single-step-β method(HSM)into the experimental study on the substructure pseudo-dynamic testing(SPDT).The technique is based on the proposed concept of equivalent shear stiffness which can meet the requirement of the HSM algorithm.A study is done to theoretically validate the technique by the numerical analysis of two-storey shear building structure,in comparison of the proposed substructure pseudo-dynamic testing algorithm with the central difference method(CDM).Then,a full-scale SPDT model,the three-storey frame-supported reinforced concrete short-limb masonry shear wall structure,is designed and tested to simulate the seismic response of the corresponding six-storey structure and verify the proposed force control HSM technique.Meanwhile,the techniques of both stiffness correction and force control are suggested to control algorithmic error,control error and measurement error.The results indicate that the force control HSM can be used in the full-scale multi-degree-of-freedom(MDOF)substructure pseudo-dynamic testing before descent segment of structure restoring force properties.