Presented here is a compact explicit difference scheme of high accuracy for solving the extended Boussinesq equations. For time discretization, a three-stage explicit Runge-Kutta method with TVD property is used at pr...Presented here is a compact explicit difference scheme of high accuracy for solving the extended Boussinesq equations. For time discretization, a three-stage explicit Runge-Kutta method with TVD property is used at predicting stage, a cubic spline function is adopted at correcting stage, which made the time discretization accuracy up to fourth order; For spatial discretization, a three-point explicit compact difference scheme with arbitrary order accuracy is employed. The extended Boussinesq equations derived by Beji and Nadaoka are solved by the proposed scheme. The numerical results agree well with the experimental data. At the same time, the comparisons of the two numerical results between the present scheme and low accuracy difference method are made, which further show the necessity of using high accuracy scheme to solve the extended Boussinesq equations. As a valid sample, the wave propagation on the rectangular step is formulated by the present scheme, the modelled results are in better agreement with the experimental data than those of Kittitanasuan.展开更多
Finite-difference methods with high-order accuracy have been utilized to improve the precision of numerical solution for partial differential equations. However, the computation cost generally increases linearly with ...Finite-difference methods with high-order accuracy have been utilized to improve the precision of numerical solution for partial differential equations. However, the computation cost generally increases linearly with increased order of accuracy. Upon examination of the finite-difference formulas for the first-order and second-order derivatives, and the staggered finite-difference formulas for the first-order derivative, we examine the variation of finite-difference coefficients with accuracy order and note that there exist some very small coefficients. With the order increasing, the number of these small coefficients increases, however, the values decrease sharply. An error analysis demonstrates that omitting these small coefficients not only maintain approximately the same level of accuracy of finite difference but also reduce computational cost significantly. Moreover, it is easier to truncate for the high-order finite-difference formulas than for the pseudospectral for- mulas. Thus this study proposes a truncated high-order finite-difference method, and then demonstrates the efficiency and applicability of the method with some numerical examples.展开更多
In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equatio...In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equation method. The numerical approximate schemes for both problems on a bounded or unbounded domain in R3 are proposed and their prior error estimates are obtained.展开更多
In this article,we improve the order of precision of the two-dimensional Poisson equation by combining extrapolation techniques with high order schemes.The high order solutions obtained traditionally generate non-spar...In this article,we improve the order of precision of the two-dimensional Poisson equation by combining extrapolation techniques with high order schemes.The high order solutions obtained traditionally generate non-sparse matrices and the calculation time is very high.We can obtain sparse matrices by applying compact schemes.In this article,we compare compact and exponential finite difference schemes of fourth order.The numerical solutions are calculated in quadruple precision(Real*16 or extended precision)in FORTRAN language,and iteratively obtained until reaching the round-off error magnitude around 1.0E−32.This procedure is performed to ensure that there is no iteration error.The Repeated Richardson Extrapolation(RRE)method combines numerical solutions in different grids,determining higher orders of accuracy.The main contribution of this work is based on a process that initializes with fourth order solutions combining with RRE in order to find solutions of sixth,eighth,and tenth order of precision.The multigrid Full Approximation Scheme(FAS)is also applied to accelerate the convergence and obtain the numerical solutions on the fine grids.展开更多
A global seventh-order dissipative compact finite-difference scheme is optimized in terms of time stability. The dissipative parameters appearing in the boundary closures are assumed to be different, resulting in an o...A global seventh-order dissipative compact finite-difference scheme is optimized in terms of time stability. The dissipative parameters appearing in the boundary closures are assumed to be different, resulting in an optimization problem with several parameters determined by applying a generic algorithm. The optimized schemes are analyzed carefully from the aspects of the eigenvalue distribution, the ε-pseudospectra, the short time behavior, and the Fourier analysis. Numerical experiments for the Euler equations are used to show the effectiveness of the final recommended scheme.展开更多
In this paper, a new alternating group explicit-implicit (nAGEI) scheme for dispersive equations with a periodic boundary condition is derived. This new unconditionally stable scheme has a fourth-order truncation er...In this paper, a new alternating group explicit-implicit (nAGEI) scheme for dispersive equations with a periodic boundary condition is derived. This new unconditionally stable scheme has a fourth-order truncation error in space and a convergence ratio faster than some known alternating methods such as ASEI and AGE. Comparison in accuracy with the AGEI and AGE methods is presented in the numerical experiment.展开更多
In order to improve the accuracy of forecasts of atmospheric and oceanic phenomena which possess a wide range of space and time scales, it is crucial to design the high-order and stable schemes. On the basis of the ex...In order to improve the accuracy of forecasts of atmospheric and oceanic phenomena which possess a wide range of space and time scales, it is crucial to design the high-order and stable schemes. On the basis of the explicit square-conservative scheme, a high-order compact explicit square-conservative scheme is proposed in this paper. This scheme not only keeps the square-conservative characteristics, but also is of high accuracy. The numerical example shows that this scheme has less computing errors and better computational stability, and it could be considered to be tested and used in many atmospheric and oceanic problems.展开更多
By using Richardson extrapolation and fourth-order compact finite difference scheme on different scale grids, a sixth-order solution is computed on the coarse grid. Other three techniques are applied to obtain a sixth...By using Richardson extrapolation and fourth-order compact finite difference scheme on different scale grids, a sixth-order solution is computed on the coarse grid. Other three techniques are applied to obtain a sixth-order solution on the fine grid, and thus give out three kinds of Richardson extrapolation-based sixth order compact computation methods. By carefully analyzing the truncation errors respectively on 2D Poisson equation, we compare the accuracy of these three sixth order methods theoretically. Numerical results for two test problems are discussed.展开更多
This paper deals with a new higher order compact difference scheme, which is, O(h4) using coupled approach on the 19-point 3D stencil for the solution of three dimensional nonlinear biharmonic equations. At each inter...This paper deals with a new higher order compact difference scheme, which is, O(h4) using coupled approach on the 19-point 3D stencil for the solution of three dimensional nonlinear biharmonic equations. At each internal grid point, the solution u(x,y,z) and its Laplacian Δ4u are obtained. The resulting stencil algo-rithm is presented and hence this new algorithm can be easily incorporated to solve many problems. The present discretization allows us to use the Dirichlet boundary conditions only and there is no need to discretize the derivative boundary conditions near the boundary. We also show that special treatment is required to handle the boundary conditions. Convergence analysis for a model problem is briefly discussed. The method is tested on three problems and compares very favourably with the corresponding second order approximation which we also discuss using coupled approach.展开更多
In many problems,one wishes to solve the Helmholtz equation with variable coefficients within the Laplacian-like term and use a high order accurate method(e.g.,fourth order accurate)to alleviate the points-per-wavelen...In many problems,one wishes to solve the Helmholtz equation with variable coefficients within the Laplacian-like term and use a high order accurate method(e.g.,fourth order accurate)to alleviate the points-per-wavelength constraint by reducing the dispersion errors.The variation of coefficients in the equation may be due to an inhomogeneous medium and/or non-Cartesian coordinates.This renders existing fourth order finite difference methods inapplicable.We develop a new compact scheme that is provably fourth order accurate even for these problems.We present numerical results that corroborate the fourth order convergence rate for several model problems.展开更多
基金The project was financially supported by the National Natural Science Foundation of China (Grant No50479053)
文摘Presented here is a compact explicit difference scheme of high accuracy for solving the extended Boussinesq equations. For time discretization, a three-stage explicit Runge-Kutta method with TVD property is used at predicting stage, a cubic spline function is adopted at correcting stage, which made the time discretization accuracy up to fourth order; For spatial discretization, a three-point explicit compact difference scheme with arbitrary order accuracy is employed. The extended Boussinesq equations derived by Beji and Nadaoka are solved by the proposed scheme. The numerical results agree well with the experimental data. At the same time, the comparisons of the two numerical results between the present scheme and low accuracy difference method are made, which further show the necessity of using high accuracy scheme to solve the extended Boussinesq equations. As a valid sample, the wave propagation on the rectangular step is formulated by the present scheme, the modelled results are in better agreement with the experimental data than those of Kittitanasuan.
基金supported by China Scholarship Council and partially by the National "863" Program of China under contract No. 2007AA06Z218.
文摘Finite-difference methods with high-order accuracy have been utilized to improve the precision of numerical solution for partial differential equations. However, the computation cost generally increases linearly with increased order of accuracy. Upon examination of the finite-difference formulas for the first-order and second-order derivatives, and the staggered finite-difference formulas for the first-order derivative, we examine the variation of finite-difference coefficients with accuracy order and note that there exist some very small coefficients. With the order increasing, the number of these small coefficients increases, however, the values decrease sharply. An error analysis demonstrates that omitting these small coefficients not only maintain approximately the same level of accuracy of finite difference but also reduce computational cost significantly. Moreover, it is easier to truncate for the high-order finite-difference formulas than for the pseudospectral for- mulas. Thus this study proposes a truncated high-order finite-difference method, and then demonstrates the efficiency and applicability of the method with some numerical examples.
基金This research was supported by the National Natural Science Foundation of China
文摘In the present paper, a new numerical method for solving initial-boundary value problems of evolutionary equations is proposed and studied, combining difference method with high accuracy with boundary integral equation method. The numerical approximate schemes for both problems on a bounded or unbounded domain in R3 are proposed and their prior error estimates are obtained.
文摘In this article,we improve the order of precision of the two-dimensional Poisson equation by combining extrapolation techniques with high order schemes.The high order solutions obtained traditionally generate non-sparse matrices and the calculation time is very high.We can obtain sparse matrices by applying compact schemes.In this article,we compare compact and exponential finite difference schemes of fourth order.The numerical solutions are calculated in quadruple precision(Real*16 or extended precision)in FORTRAN language,and iteratively obtained until reaching the round-off error magnitude around 1.0E−32.This procedure is performed to ensure that there is no iteration error.The Repeated Richardson Extrapolation(RRE)method combines numerical solutions in different grids,determining higher orders of accuracy.The main contribution of this work is based on a process that initializes with fourth order solutions combining with RRE in order to find solutions of sixth,eighth,and tenth order of precision.The multigrid Full Approximation Scheme(FAS)is also applied to accelerate the convergence and obtain the numerical solutions on the fine grids.
基金Project supported by the National Natural Science Foundation of China(Nos.11601517,11502296,61772542,and 61561146395)the Basic Research Foundation of National University of Defense Technology(No.ZDYYJ-CYJ20140101)
文摘A global seventh-order dissipative compact finite-difference scheme is optimized in terms of time stability. The dissipative parameters appearing in the boundary closures are assumed to be different, resulting in an optimization problem with several parameters determined by applying a generic algorithm. The optimized schemes are analyzed carefully from the aspects of the eigenvalue distribution, the ε-pseudospectra, the short time behavior, and the Fourier analysis. Numerical experiments for the Euler equations are used to show the effectiveness of the final recommended scheme.
基金National Natural Science Foundation of China (No.10671113)
文摘In this paper, a new alternating group explicit-implicit (nAGEI) scheme for dispersive equations with a periodic boundary condition is derived. This new unconditionally stable scheme has a fourth-order truncation error in space and a convergence ratio faster than some known alternating methods such as ASEI and AGE. Comparison in accuracy with the AGEI and AGE methods is presented in the numerical experiment.
文摘In order to improve the accuracy of forecasts of atmospheric and oceanic phenomena which possess a wide range of space and time scales, it is crucial to design the high-order and stable schemes. On the basis of the explicit square-conservative scheme, a high-order compact explicit square-conservative scheme is proposed in this paper. This scheme not only keeps the square-conservative characteristics, but also is of high accuracy. The numerical example shows that this scheme has less computing errors and better computational stability, and it could be considered to be tested and used in many atmospheric and oceanic problems.
文摘By using Richardson extrapolation and fourth-order compact finite difference scheme on different scale grids, a sixth-order solution is computed on the coarse grid. Other three techniques are applied to obtain a sixth-order solution on the fine grid, and thus give out three kinds of Richardson extrapolation-based sixth order compact computation methods. By carefully analyzing the truncation errors respectively on 2D Poisson equation, we compare the accuracy of these three sixth order methods theoretically. Numerical results for two test problems are discussed.
文摘This paper deals with a new higher order compact difference scheme, which is, O(h4) using coupled approach on the 19-point 3D stencil for the solution of three dimensional nonlinear biharmonic equations. At each internal grid point, the solution u(x,y,z) and its Laplacian Δ4u are obtained. The resulting stencil algo-rithm is presented and hence this new algorithm can be easily incorporated to solve many problems. The present discretization allows us to use the Dirichlet boundary conditions only and there is no need to discretize the derivative boundary conditions near the boundary. We also show that special treatment is required to handle the boundary conditions. Convergence analysis for a model problem is briefly discussed. The method is tested on three problems and compares very favourably with the corresponding second order approximation which we also discuss using coupled approach.
基金supported by the United States-Israel Binational Science Foundation(BSF),grant number 2008094Research of the first and second authors was also supported in part by the US Air Force,grant number FA9550-07-1-0170US NSF,grant number DMS-0810963.
文摘In many problems,one wishes to solve the Helmholtz equation with variable coefficients within the Laplacian-like term and use a high order accurate method(e.g.,fourth order accurate)to alleviate the points-per-wavelength constraint by reducing the dispersion errors.The variation of coefficients in the equation may be due to an inhomogeneous medium and/or non-Cartesian coordinates.This renders existing fourth order finite difference methods inapplicable.We develop a new compact scheme that is provably fourth order accurate even for these problems.We present numerical results that corroborate the fourth order convergence rate for several model problems.