期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Research on testing method of resin sand high temperature compressive strength 被引量:7
1
作者 Peng Wan Luan-cai Li +1 位作者 Long Zhang Wen-qing Wang 《China Foundry》 SCIE 2016年第5期335-341,共7页
High temperature compressive strength is one of the most important performances of resin sand; its value directly concerns the quality of castings. In order to seek the best testing method of resin sand high temperatu... High temperature compressive strength is one of the most important performances of resin sand; its value directly concerns the quality of castings. In order to seek the best testing method of resin sand high temperature compressive strength, a self-developed instrument was used to carry out experiments, and the sample shape and size were designed and studied. The results show that a hollow cylinder sample can reflect the strength difference of different resin sands better than a solid cylinder sample, and its data is stable. The experiments selected φ20/5×30 mm as the size of the hollow cylinder samples. The high temperature compressive strengths of phenol-formaldehyde resin coated sand, furan resin self-setting sand, and TEA resin sand were each tested. For the resin sand used for cast steel and cast iron, 1,000 ℃ was selected as the test temperature; for the resin sand used for cast non-ferrous alloy, 800 ℃ was selected as the test temperature; and for all the resin sand samples, 1 min was selected as the holding time. This testing method can truthfully reflect the high temperature performance of three kinds of resin sand; it is reproducible, and the variation coefficients of test values are under 10%. 展开更多
关键词 resin sand high temperature compressive strength hollow cylinder specimens variation coefficient
下载PDF
A Simple Mix Proportion Design Method Based on Frost Durability for Recycled High Performance Concrete Using Fully Coarse Recycled Aggregate 被引量:3
2
作者 王新杰 LIU Wenying +2 位作者 WEI Da 朱平华 胡坤 《Journal of Wuhan University of Technology(Materials Science)》 SCIE EI CAS 2017年第5期1119-1124,共6页
Durability design of recycled high performance concrete(RHPC) is fundamental for improving the use rate and level of concrete waste as coarse recycled aggregate(CRA). We discussed a frostdurability-based mix propo... Durability design of recycled high performance concrete(RHPC) is fundamental for improving the use rate and level of concrete waste as coarse recycled aggregate(CRA). We discussed a frostdurability-based mix proportion design method for RHPC using 100 % CRA and natural sand. Five groups of RHPC mixes with five strength grades(40, 50, 60, 70 and 80 MPa) were produced using CRA with four quality classes, and their workability, 28 d compressive strengths and frost resistances(measured by the compressive strength loss ratio and the relative dynamic modulus of elasticity) were tested. Relationships between the 28 d compressive strength, the frost resistance and the CRA quality characteristic parameter, water absorption, were then developed. The criterion of a CRA maximum water absorption limit value for RHPC was suggested, independent of its source and quality class. The results show that all RHPC mixes achieve the expected target workability, strength, and frost durability. The research results demonstrate that the application of the proposed method does not require trial testing prior to use. 展开更多
关键词 recycled high performance concrete mix proportion design frost durability compressive strength water absorption
下载PDF
Design and fabrication of high-performance injectable self-setting trimagnesium phosphate
3
作者 Jiawei Liu Wen Hou +7 位作者 Wenying Wei Jian Peng Xiaopei Wu Chenxi Lian Yanan Zhao Rong Tu Takashi Goto Honglian Dai 《Bioactive Materials》 SCIE CSCD 2023年第10期348-357,共10页
Magnesium phosphate bone cement has become a widely used orthopedic implant due to the advantages of fast-setting and high early strength. However, developing magnesium phosphate cement possessing applicable injectabi... Magnesium phosphate bone cement has become a widely used orthopedic implant due to the advantages of fast-setting and high early strength. However, developing magnesium phosphate cement possessing applicable injectability, high strength, and biocompatibility simultaneously remains a significant challenge. Herein, we propose a strategy to develop high-performance bone cement and establish a trimagnesium phosphate cement (TMPC) system. The TMPC exhibits high early strength, low curing temperature, neutral pH, and excellent injectability, overcoming the critical limitations of recently studied magnesium phosphate cement. By monitoring the hydration pH value and electroconductivity, we demonstrate that the magnesium-to-phosphate ratio could manipulate the components of hydration products and their transformation by adjusting the pH of the system, which will influence the hydration speed. Further, the ratio could regulate the hydration network and the properties of TMPC. Moreover, in vitro studies show that TMPC has outstanding biocompatibility and bone-filling capacity. The facile preparation properties and these advantages of TMPC render it a potential clinical alternative to polymethylmethacrylate and calcium phosphate bone cement. This study will contribute to the rational design of high-performance bone cement. 展开更多
关键词 Bone cement Trimagnesium phosphate high compressive strength INJECTABLE Bioactive materials
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部