In this paper, poly(vinyl alcohol)(PVA) and PVA/poly(ethylene glycol)(PEG) hybrid hydrogels were synthesized by freeze-thawing or freeze-thawing followed by high energy electron beam irradiation. The influence...In this paper, poly(vinyl alcohol)(PVA) and PVA/poly(ethylene glycol)(PEG) hybrid hydrogels were synthesized by freeze-thawing or freeze-thawing followed by high energy electron beam irradiation. The influence of PEG molecular weight, mass ratios of PVA to PEG, thawing temperature and number of freeze-thawing(FT) cycles on the mechanical strength of PVA/PEG hydrogel was investigated. Also, the thermal behaviors were examined by differential scanning calorimetry(DSC) and the microstructttres were observed with scanning electron microscopy(SEM). The results suggest that the addition of PEG improves the mechanical strength of PVA hydrogel and the irradiation reduces both the strength of PVA/PEG hydrogel slightly and the degree of crystallinity. The improved properties suggest that PVA/PEG hydrogel can be a good candidate for the application in the biomedical.展开更多
文摘In this paper, poly(vinyl alcohol)(PVA) and PVA/poly(ethylene glycol)(PEG) hybrid hydrogels were synthesized by freeze-thawing or freeze-thawing followed by high energy electron beam irradiation. The influence of PEG molecular weight, mass ratios of PVA to PEG, thawing temperature and number of freeze-thawing(FT) cycles on the mechanical strength of PVA/PEG hydrogel was investigated. Also, the thermal behaviors were examined by differential scanning calorimetry(DSC) and the microstructttres were observed with scanning electron microscopy(SEM). The results suggest that the addition of PEG improves the mechanical strength of PVA hydrogel and the irradiation reduces both the strength of PVA/PEG hydrogel slightly and the degree of crystallinity. The improved properties suggest that PVA/PEG hydrogel can be a good candidate for the application in the biomedical.