High field asymmetric wave ion mobility spectrometry (FAIMS) is a powerful tool to detect and characterize gas-phase ions, while the unsolvable partial differential equation of ions moving in ion drift tube poses a ...High field asymmetric wave ion mobility spectrometry (FAIMS) is a powerful tool to detect and characterize gas-phase ions, while the unsolvable partial differential equation of ions moving in ion drift tube poses a big challenge to FAIMS spectral peak analysis. In this work, a universal and effective model of FAIMS spectral peak profile has been proposed by introducing ion trajectory and loss height. With this model, the influence of the structure of ion drift tube, dispersion voltages, compensation voltages, and carrier gas flow rate on the FAIMS spectral peak characteristics like peak shape, full width at half maximum and peak height is analyzed and discussed. The results show that the influence of different factors on the FAIMS spectral peak profile can be qualitatively described by the model which agrees with the experimental data.展开更多
The Vlasov-Poisson-Fokker-Planck system under the high field scaling describes the Brownian motion of a large system of particles in a surrounding bath where both collision and field effects (electrical or gravitatio...The Vlasov-Poisson-Fokker-Planck system under the high field scaling describes the Brownian motion of a large system of particles in a surrounding bath where both collision and field effects (electrical or gravitational) are dominant. Numerically solving this system becomes challenging due to the stiff collision term and stiff nonlinear transport term with respect to the high field. We present a class of Asymptotic-Preserving scheme which is efficient in the high field regime, namely, large time steps and coarse meshes can be used, yet the high field limit is still captured. The idea is to combine the two stiff terms and treat them implicitly. Thanks to the linearity of the collision term, using the discretization described in [Jin S, Yah B. J. Comp. Phys., 2011, 230: 6420-6437] we only need to invert a symmetric matrix. This method can be easily extended to higher dimensions. The method is shown to be positive, stable, mass and asymptotic preserving. Numerical experiments validate its efficiency in both kinetic and high field regimes including mixing regimes.展开更多
Core fueling is plasmas to reach enhanced confinement regime and elevate output fusion power. However it is not easy to do so. Making use of the 2-D Kuteev lentil model, including kinetic effects, we find that existin...Core fueling is plasmas to reach enhanced confinement regime and elevate output fusion power. However it is not easy to do so. Making use of the 2-D Kuteev lentil model, including kinetic effects, we find that existing pellet injection techniques will not meet core-fueling requirements for ITER-FEAT. A pressureas high as 254 MPa should be applied to a pellet accelerator 200 cm-long single-stage pneumatic gun, in order to accelerate a pellet of radius rpo = 0. 5 cm to a velocity of νp0, 24 × 10^5cm·s^-1 penetrating 100 cm into the ITER plasma core.展开更多
Human African Trypanosomiasis (HAT) or sleeping thickness is a forest and rural disease;where agriculture is the main activity. It is a chronic and lethal disease without treatment. HAT is caused by two parasites;Tryp...Human African Trypanosomiasis (HAT) or sleeping thickness is a forest and rural disease;where agriculture is the main activity. It is a chronic and lethal disease without treatment. HAT is caused by two parasites;Trypanosoma Brucei Gambiense (gTB) and Trypanosoma Brucei Rhodesiense (rTB) transmitted to humans by the tsetse fly. It is endemic condition in Africa between the 15° north latitude and the 20° south latitude. It is reported outside this area in travelers who stayed in endemic zone. Infection by gTB is wider and more frequent (98%) than that by rTB (2%). The Democratic Republic of Congo is the most affected country with more than 75% of reported cases. The geographical distribution is not homogeneous. There are more affected regions in a zone called “foci” which represents areas favorable to the development of the vector. Its diagnosis and treatment are very important because of its social and economic impact at both the individual and community levels. Promising molecules including fexinidazole are currently undergoing testing. Nowadays populations move more and more easily but the discovery of this disease in daily neuroradiological practice is exceptional. We propose in this paper through two observations, reminders on epidemiological, clinical and MRI features of HAT. It typically performs the edematous, bilateral and diffuse encephalitis. It is important to distinguish these aspects from the arsenic-induced encephalitis that may occur during treatment. Only vector control allows eradicating this disease. WHO has set targets elimination of HAT as a public health problem for 2020 deadline.展开更多
Since the first practical cryocooled superconducting magnet using a GM-cryocooler and high temperature superconducting current leads has been demonstrated successfully at the High Field Laboratory for Superconducting ...Since the first practical cryocooled superconducting magnet using a GM-cryocooler and high temperature superconducting current leads has been demonstrated successfully at the High Field Laboratory for Superconducting Materials(HFLSM),various kinds of cryocooled superconducting magnets in fields up to 15 T have been used to provide access for new research areas in fields of magneto-science.Recently,the HFLSM has succeeded in demonstrating a cryocooed 18 T high temperature superconducting magnet and a high field cryocooled 27.5 T hybrid magnet.Cryocooled magnet technology and basic research using high field magnets at the HFLSM are introduced.展开更多
We report polarization reversal periodically controlled by the electric field in multiferroic MnWO_(4) with a pulsed field up to 52 T.The electric polarization cannot be reversed by successive opposite electric fields...We report polarization reversal periodically controlled by the electric field in multiferroic MnWO_(4) with a pulsed field up to 52 T.The electric polarization cannot be reversed by successive opposite electric fields in low magnetic fields(<14 T)at 4.2 K,whereas polarization reversal is directly achieved by two opposite electric fields under high magnetic fields(<45 T).Interestingly,the polarization curve of rising and falling fields for H∥u(magnetic easy axis)is irreversible when the magnetic field is close to 52 T.In this case,the rising and falling polarization curves can be individually reversed by the electric field,and thus require five cycles to recover to the initial condition by the order of the applied electric fields(+E,-E,-E,+E,+E).In addition,we find that ferroelectric phaseⅣcan be tuned from parallel to antiparallel in relation to ferroelectric phase AF2 by applying a magnetic field approximated to the c axis.展开更多
Based on high magnetic field helicon experiment(HMHX), HELIC code was used to study the effect of different magnetic fields on the power deposition under parabolic distribution. This paper is divided into three parts:...Based on high magnetic field helicon experiment(HMHX), HELIC code was used to study the effect of different magnetic fields on the power deposition under parabolic distribution. This paper is divided into three parts: preliminary calculation, actual discharge experiment and calculation. The results of preliminary calculation show that a magnetic field that is too small or too large cannot produce a good power deposition effect. When the magnetic field strength is 1200 Gs,a better power deposition can be obtained. The actual discharge experiment illustrates that the change of the magnetic field will have a certain influence on the discharge phenomenon. Finally, the results of verification calculation successfully verify the accuracy of the results of preliminary simulation. The results show that in the actual discharge experiment, it can achieve the best deposition effect when the magnetic field is 1185 Gs.展开更多
The effect of high magnetic field on the atomic interdiffusion in Ni-Cu system was studied using the Cu/Ni/Cu diffusion couples. During the atomic interdiffusion in Ni-Cu system, it was found that the interdiffusion c...The effect of high magnetic field on the atomic interdiffusion in Ni-Cu system was studied using the Cu/Ni/Cu diffusion couples. During the atomic interdiffusion in Ni-Cu system, it was found that the interdiffusion coefficients increased with the increase of molar fraction of Ni atoms in the interdiffusion zones when the couples were annealed with or without the magnetic field. It was noted that all corresponding interdiffusion coefficients under the magnetic field are smaller than those without the magnetic field. The results demonstrate that the magnetic field retards the atomic interdiffusion in Ni-Cu system. This retardation is achieved through reducing the frequency factors but not changing the interdiffusion activation energies.展开更多
Highly ordered TiO_2 nanotube arrays(NTAs) on Si substrate possess broad applications due to its high surfaceto-volume ratio and novel functionalities, however, there are still some challenges on facile synthesis. Her...Highly ordered TiO_2 nanotube arrays(NTAs) on Si substrate possess broad applications due to its high surfaceto-volume ratio and novel functionalities, however, there are still some challenges on facile synthesis. Here, we report a simple and cost-effective high-field(90–180V) anodization method to grow highly ordered TiO_2 NTAs on Si substrate,and investigate the effect of anodization time, voltage, and fluoride content on the formation of TiO_2 NTAs. The current density–time curves, recorded during anodization processes, can be used to determine the optimum anodization time. It is found that the growth rate of TiO_2 NTAs is improved significantly under high field, which is nearly 8 times faster than that under low fields(40–60 V). The length and growth rate of the nanotubes are further increased with the increase of fluoride content in the electrolyte.展开更多
The shape change of the γ' precipitates of cast Ni-based superalloy K52 after aging treatment under a high magnetic field was investigated. The results show that duplex γ' precipitates are present in the γ matrix...The shape change of the γ' precipitates of cast Ni-based superalloy K52 after aging treatment under a high magnetic field was investigated. The results show that duplex γ' precipitates are present in the γ matrix after aging treatment with or without the magnetic field. One is the coarse particles with average size of 500 nm; the other is fine spherical γ' precipitates with average of 100 nm in diameter. The application of a 10T magnetic field only results in the shape of the coarse γ' particles changing from spherical to cuboidal when the alloys subjected to the same heat treatments. This shape change was mainly discussed based on the strain energy increase caused by the difference in magnetostriction between the γ matrix and γ' precipitates. The fine γ' particles still keep spherical. Further TEM observations shows that a number of γ particles in nano-scale precipitate in the coarse γ' particles in the specimens treated without the magnetic field. In addition, it was found that the magnetic field caused the decrease of the hardness in the alloy, and the hardness was associated with the field direction.展开更多
The solidification behaviors of AZ61 magnesium alloy under a high magnetic field were studied. The corrosion property of AZ61 alloy was investigated in a solution of 3.5 mol/L NaCI by measuring electrochemical p.olari...The solidification behaviors of AZ61 magnesium alloy under a high magnetic field were studied. The corrosion property of AZ61 alloy was investigated in a solution of 3.5 mol/L NaCI by measuring electrochemical p.olarization. The results show that the high magnetic field can refine microstructure and benefit aluminum transfer. The crystal of α-Mg is induced to orient with their c-axis parallel to the magnetic field. The corrosion studies indicate that different crystal plane of magnesium has different corrosion property. The passivating films on the α- and b-planes have higher corrosion resistance than that on the c-plane. Aligned structure affects the corrosion property of AZ61 magnesium alloy.展开更多
A step stress test is carried out to study the reliability characteristics of an AlGaN/GaN high electron mobility transistor(HEMT).An anomalous critical drain-to-gate voltage with a negative temperature coefficient ...A step stress test is carried out to study the reliability characteristics of an AlGaN/GaN high electron mobility transistor(HEMT).An anomalous critical drain-to-gate voltage with a negative temperature coefficient is observed in the stress sequence,beyond which the HEMT device starts to recover from degradation induced by early lower voltage stress.While the performance degradation featuring the drain current slump stems from electron trapping in the surface or bulk states during low-to-medium bias stress,the recovery is attributed to high field induced electron detrapping.The carrier detrapping mechanism could be helpful for lessening the trapping-related performance degradation of a GaN-based HEMT.展开更多
In-situ TiB2/7055Al nanocomposites are fabricated by in situ melt chemical reaction from 7055Al-K2TiF6-KBF4 system under high intensity ultrasonic field,and the mechanism and kinetic model of in-situ melt chemical rea...In-situ TiB2/7055Al nanocomposites are fabricated by in situ melt chemical reaction from 7055Al-K2TiF6-KBF4 system under high intensity ultrasonic field,and the mechanism and kinetic model of in-situ melt chemical reaction are investigated.X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses indicate that the sizes of in-situ TiB2 nanoparticles are in the range of 80-120 nm.The results of ice-water quenched samples show that the whole process contains four stages,and the overall in-situ reaction time is 10 minutes.The in situ synthesis process is controlled mainly by chemical reaction in earlier stage (former 3 minutes),and by the particulate diffusing in later stage.The mechanism of key reaction between Al3Ti and AlB2 under high intensity ultrasonic in the 7055Al-K2TiF6-KBF4 system is the reaction-diffusion-crack-rediffusion.Furthermore,the reactive kinetic models in 7055Al-K2TiF6-KBF4 system are established.展开更多
Compression waves propagating through molten metals are contributed to degassing, accelerating reaction rate,removing exclusions from molten metals and refining solidification structures during metallurgical processin...Compression waves propagating through molten metals are contributed to degassing, accelerating reaction rate,removing exclusions from molten metals and refining solidification structures during metallurgical processing of materials. In the present study, two electromagnetic methods are proposed to generate intense compression wavesdirectly in liquid metals. One is the simultaneous imposition of a high frequency electrical current field and a staticmagnetic field; the other is that of a high frequency magnetic field and a static magnetic field. A mathematical modelbased on compressible fluid dynamics and electromagnetic fields theory has been developed to derive pressure distributions of the generated waves in a metal. It shows that the intensity of compression waves is proportional to thatof the high frequency electromagnetic force. And the frequency is the same as that of the imposed electromagneticforce. On the basis of theoretical analyses, pressure change in liquid gallium was examined by a pressure transducerunder various conditions. The observed results approximately agreed with the predictions derived from the theoreticalanalyses and calculations. Moreover, the effect of the generated waves on improvement of solidification structureswas also examined. It shows that the generated compression waves can refine solidification structures when they wereapplied to solidification process of Sn-Pb alloy. This study indicates a new method to generate compression wavesby imposing high frequency electromagnetic force locally on molten metals and this kind of compression waves canprobably overcome the difficulties when waves are excited by mechanical vibration in high temperature environments.展开更多
To investigate the influence of high magnetic field (HMF) on the solidification microstructure of Cu-25wt.%Ag alloy, the Cu-25wt.%Ag alloy was prepared under HMF of 12 T, and for comparison, the alloy solidified witho...To investigate the influence of high magnetic field (HMF) on the solidification microstructure of Cu-25wt.%Ag alloy, the Cu-25wt.%Ag alloy was prepared under HMF of 12 T, and for comparison, the alloy solidified without HMF was also fabricated. Macro and microstructures of the alloys were observed using the stereomicroscope, and scanning electron microscope, field emission scanning electron microscopy. The weight percentages of the pro-eutectic and eutectic, Cu phase and Ag phase in eutectic, and precipitates of Ag phase in pro-eutectic were analyzed by using of IPP software. Results show that the morphology of the column dendrites changes into cellular dendrites and the grains are refined under HMF of 12 T. Meanwhile, the thickness of the eutectic wall increases, but the sizes of Cu phase and Ag phase and the eutectic lamellar spacings are decreased. The Ag precipitates in the Cu matrix become coarser and sparser. The weight percentage variation of the phases in the microstructure and the Cu-Ag binary phase diagram reveals that the eutectic point moves to the left of the eutectic point in the equilibrium condition and the supersaturated solid solubility of Ag decreases under HMF.展开更多
We present a review of the principal developments in the evolution and synergism of solute and particle migration in a liquid melt in high-gradient magnetic fields and we also describe their effects on the solidificat...We present a review of the principal developments in the evolution and synergism of solute and particle migration in a liquid melt in high-gradient magnetic fields and we also describe their effects on the solidification microstructure of alloys.Diverse areas relevant to various aspects of theory and applications of high-gradient magnetic field-controlled migration of solutes and particles are surveyed.They include introduction,high-gradient magnetic field effects,migration behavior of solute and particles in high-gradient magnetic fields,microstructure evolution induced by high-gradient magnetic fieldcontrolled migrations of solute and particles,and properties of materials modified by high-gradient magnetic field-tailored microstructure.Selected examples of binary and multiphase alloy systems are presented and examined,with the main focus on the correlation between the high-gradient magnetic field-modified migration and the related solidification microstructure evolution.Particular attention is given to the mechanisms responsible for the microstructure evolution induced by highgradient magnetic fields.展开更多
Wuhan National High Magnetic Field Center(WHMFC)at Huazhong University of Science and Technology is one of the top-class research centers in the world,which can offer pulsed fields up to 90.6 T with different field wa...Wuhan National High Magnetic Field Center(WHMFC)at Huazhong University of Science and Technology is one of the top-class research centers in the world,which can offer pulsed fields up to 90.6 T with different field waveforms for scientific research and has passed the final evaluation of the Chinese government in 2014.This paper will give a brief introduction of the facility and the development status of pulsed magnetic fields research at WHMFC.In addition,it will describe the application development of pulsed magnetic fields in both scientific and industrial research.展开更多
The liquid phase separation behavior and the evolution of the solidification microstructure of a binary Cu_(50)Fe_(50) alloy were investigated under the conditions of without and with a 10 T magnetic field,with differ...The liquid phase separation behavior and the evolution of the solidification microstructure of a binary Cu_(50)Fe_(50) alloy were investigated under the conditions of without and with a 10 T magnetic field,with different undercooling during the solidification process.Results show that the combined effect of Stokes motion and Marangoni convection leads to the formation of the core-shell structure under the condition without the magnetic field.In addition,specific gravity segregation is reinforced by increasing the undercooling,resulting in Fe-rich phase drifts towards the sample edge.In the 10 T magnetic field,the Fe-rich phase is elongated in the parallel direction of the magnetic field under the action of demagnetization energy due to the difference of static magnetic energy and surface energy.In the vertical direction,through the action of Lorentz force,the convection in the melt is inhibited and Fe-rich phase becomes more dispersed.Meanwhile,the diffusion of the two phases and the coagulation of the Fe-rich phases are also restrained under the magnetic field,therefore,the phase volume fraction of the Fe-rich phase decreases at the same undercooling in the 10 T magnetic field.The magnetic field inhibits the segregation behavior in the vertical direction of the magnetic field,and at the same time,improves the gravitational segregation to a certain extent,which has a very important impact on microstructure regulation.展开更多
The effect of high magnetic fields on the morphology of Al-Mn phases was investigated. It is found that the tropism and the alignment of Al6Mn precipitated phases become regular under high magnetic fields. The stronge...The effect of high magnetic fields on the morphology of Al-Mn phases was investigated. It is found that the tropism and the alignment of Al6Mn precipitated phases become regular under high magnetic fields. The stronger the high magnetic fields, the more regular the alignment of Al6Mn precipitated phases. Al6Mn precipitated phases can generate oriented alignment and aggregation under high magnetic fields through the observation of the quenched microstructure of the Al-Mn alloy at different temperatures. Meanwhile, the number of Al6Mn phases increases continuously along with the increasing function time of high magnetic fields. X-ray diffraction also indicates that Al6Mn phases generate obvious tropism under high magnetic fields. The process of aggregation and growth of Al6Mn precipitated phases under the function of high magnetic fields after orientation were analyzed and discussed.展开更多
High magnetic field shielding has been increasingly important for engineering design in recent years. In this report, a cylindric shield made from soft iron is studied using FEM (finite element method) analysis and ...High magnetic field shielding has been increasingly important for engineering design in recent years. In this report, a cylindric shield made from soft iron is studied using FEM (finite element method) analysis and COlnpared with experiments. The residual fields inside the shield are calculated and measured in both parallel and perpendicular fields up to 2000 Gs. The calculated results are compared with the experiments, and the input B-H curve is modified for a better conformity. The results indicate that the covers could greatly improve the shielding performance of the cylindric shield in our research. The comparison result shows that a proper B-H curve, which can well describe the material properties, is very important in FEM analysis and should be selected carefully.展开更多
基金This work was supported by the National Natural Science Foundation of China (No.60871037 andNo.61004133) and the Innovation and Technology Fund of Hefei Institutes of Physical Science.
文摘High field asymmetric wave ion mobility spectrometry (FAIMS) is a powerful tool to detect and characterize gas-phase ions, while the unsolvable partial differential equation of ions moving in ion drift tube poses a big challenge to FAIMS spectral peak analysis. In this work, a universal and effective model of FAIMS spectral peak profile has been proposed by introducing ion trajectory and loss height. With this model, the influence of the structure of ion drift tube, dispersion voltages, compensation voltages, and carrier gas flow rate on the FAIMS spectral peak characteristics like peak shape, full width at half maximum and peak height is analyzed and discussed. The results show that the influence of different factors on the FAIMS spectral peak profile can be qualitatively described by the model which agrees with the experimental data.
基金supported by NSF grant No.DMS-0608720,and NSF FRG grant DMS-0757285
文摘The Vlasov-Poisson-Fokker-Planck system under the high field scaling describes the Brownian motion of a large system of particles in a surrounding bath where both collision and field effects (electrical or gravitational) are dominant. Numerically solving this system becomes challenging due to the stiff collision term and stiff nonlinear transport term with respect to the high field. We present a class of Asymptotic-Preserving scheme which is efficient in the high field regime, namely, large time steps and coarse meshes can be used, yet the high field limit is still captured. The idea is to combine the two stiff terms and treat them implicitly. Thanks to the linearity of the collision term, using the discretization described in [Jin S, Yah B. J. Comp. Phys., 2011, 230: 6420-6437] we only need to invert a symmetric matrix. This method can be easily extended to higher dimensions. The method is shown to be positive, stable, mass and asymptotic preserving. Numerical experiments validate its efficiency in both kinetic and high field regimes including mixing regimes.
文摘Core fueling is plasmas to reach enhanced confinement regime and elevate output fusion power. However it is not easy to do so. Making use of the 2-D Kuteev lentil model, including kinetic effects, we find that existing pellet injection techniques will not meet core-fueling requirements for ITER-FEAT. A pressureas high as 254 MPa should be applied to a pellet accelerator 200 cm-long single-stage pneumatic gun, in order to accelerate a pellet of radius rpo = 0. 5 cm to a velocity of νp0, 24 × 10^5cm·s^-1 penetrating 100 cm into the ITER plasma core.
文摘Human African Trypanosomiasis (HAT) or sleeping thickness is a forest and rural disease;where agriculture is the main activity. It is a chronic and lethal disease without treatment. HAT is caused by two parasites;Trypanosoma Brucei Gambiense (gTB) and Trypanosoma Brucei Rhodesiense (rTB) transmitted to humans by the tsetse fly. It is endemic condition in Africa between the 15° north latitude and the 20° south latitude. It is reported outside this area in travelers who stayed in endemic zone. Infection by gTB is wider and more frequent (98%) than that by rTB (2%). The Democratic Republic of Congo is the most affected country with more than 75% of reported cases. The geographical distribution is not homogeneous. There are more affected regions in a zone called “foci” which represents areas favorable to the development of the vector. Its diagnosis and treatment are very important because of its social and economic impact at both the individual and community levels. Promising molecules including fexinidazole are currently undergoing testing. Nowadays populations move more and more easily but the discovery of this disease in daily neuroradiological practice is exceptional. We propose in this paper through two observations, reminders on epidemiological, clinical and MRI features of HAT. It typically performs the edematous, bilateral and diffuse encephalitis. It is important to distinguish these aspects from the arsenic-induced encephalitis that may occur during treatment. Only vector control allows eradicating this disease. WHO has set targets elimination of HAT as a public health problem for 2020 deadline.
文摘Since the first practical cryocooled superconducting magnet using a GM-cryocooler and high temperature superconducting current leads has been demonstrated successfully at the High Field Laboratory for Superconducting Materials(HFLSM),various kinds of cryocooled superconducting magnets in fields up to 15 T have been used to provide access for new research areas in fields of magneto-science.Recently,the HFLSM has succeeded in demonstrating a cryocooed 18 T high temperature superconducting magnet and a high field cryocooled 27.5 T hybrid magnet.Cryocooled magnet technology and basic research using high field magnets at the HFLSM are introduced.
基金Project supported by the National Natural Science Foundation of China (Grant Nos.12074135,12104388,and 52272219)Nanyang Normal University,the Natural Science Foundation of Henan Province (Grant Nos.222300420255 and 232300421220)the Key Scientific and Technological Projiect of Technology Depeartment of Henan Province of China (Grant Nos.222102230105 and 212102210448)。
文摘We report polarization reversal periodically controlled by the electric field in multiferroic MnWO_(4) with a pulsed field up to 52 T.The electric polarization cannot be reversed by successive opposite electric fields in low magnetic fields(<14 T)at 4.2 K,whereas polarization reversal is directly achieved by two opposite electric fields under high magnetic fields(<45 T).Interestingly,the polarization curve of rising and falling fields for H∥u(magnetic easy axis)is irreversible when the magnetic field is close to 52 T.In this case,the rising and falling polarization curves can be individually reversed by the electric field,and thus require five cycles to recover to the initial condition by the order of the applied electric fields(+E,-E,-E,+E,+E).In addition,we find that ferroelectric phaseⅣcan be tuned from parallel to antiparallel in relation to ferroelectric phase AF2 by applying a magnetic field approximated to the c axis.
基金supported by the National Natural Science Foundation of China (Grant Nos. 11975163 and 12175160)the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)。
文摘Based on high magnetic field helicon experiment(HMHX), HELIC code was used to study the effect of different magnetic fields on the power deposition under parabolic distribution. This paper is divided into three parts: preliminary calculation, actual discharge experiment and calculation. The results of preliminary calculation show that a magnetic field that is too small or too large cannot produce a good power deposition effect. When the magnetic field strength is 1200 Gs,a better power deposition can be obtained. The actual discharge experiment illustrates that the change of the magnetic field will have a certain influence on the discharge phenomenon. Finally, the results of verification calculation successfully verify the accuracy of the results of preliminary simulation. The results show that in the actual discharge experiment, it can achieve the best deposition effect when the magnetic field is 1185 Gs.
基金Project(2011CB012803) supported by the National Basic Research Program of ChinaProject(NCET-10-0278) supported by Program for New Century Excellent Talents in University,China
文摘The effect of high magnetic field on the atomic interdiffusion in Ni-Cu system was studied using the Cu/Ni/Cu diffusion couples. During the atomic interdiffusion in Ni-Cu system, it was found that the interdiffusion coefficients increased with the increase of molar fraction of Ni atoms in the interdiffusion zones when the couples were annealed with or without the magnetic field. It was noted that all corresponding interdiffusion coefficients under the magnetic field are smaller than those without the magnetic field. The results demonstrate that the magnetic field retards the atomic interdiffusion in Ni-Cu system. This retardation is achieved through reducing the frequency factors but not changing the interdiffusion activation energies.
基金supported by National 863 Program 2011AA050518the Natural Science Foundation of China(Grant Nos.11174197,11574203,and 61234005)
文摘Highly ordered TiO_2 nanotube arrays(NTAs) on Si substrate possess broad applications due to its high surfaceto-volume ratio and novel functionalities, however, there are still some challenges on facile synthesis. Here, we report a simple and cost-effective high-field(90–180V) anodization method to grow highly ordered TiO_2 NTAs on Si substrate,and investigate the effect of anodization time, voltage, and fluoride content on the formation of TiO_2 NTAs. The current density–time curves, recorded during anodization processes, can be used to determine the optimum anodization time. It is found that the growth rate of TiO_2 NTAs is improved significantly under high field, which is nearly 8 times faster than that under low fields(40–60 V). The length and growth rate of the nanotubes are further increased with the increase of fluoride content in the electrolyte.
基金supported by the National Natural Science Foundation of China under grant No. 10477006the Key Project of Chinese Ministry of Education undergrant No. 106055
文摘The shape change of the γ' precipitates of cast Ni-based superalloy K52 after aging treatment under a high magnetic field was investigated. The results show that duplex γ' precipitates are present in the γ matrix after aging treatment with or without the magnetic field. One is the coarse particles with average size of 500 nm; the other is fine spherical γ' precipitates with average of 100 nm in diameter. The application of a 10T magnetic field only results in the shape of the coarse γ' particles changing from spherical to cuboidal when the alloys subjected to the same heat treatments. This shape change was mainly discussed based on the strain energy increase caused by the difference in magnetostriction between the γ matrix and γ' precipitates. The fine γ' particles still keep spherical. Further TEM observations shows that a number of γ particles in nano-scale precipitate in the coarse γ' particles in the specimens treated without the magnetic field. In addition, it was found that the magnetic field caused the decrease of the hardness in the alloy, and the hardness was associated with the field direction.
基金This work was supported by the National Natural Science Foundation of China under grant No.50234020 and 50475157the Key Project by Ministry of Education of China(No.105052).
文摘The solidification behaviors of AZ61 magnesium alloy under a high magnetic field were studied. The corrosion property of AZ61 alloy was investigated in a solution of 3.5 mol/L NaCI by measuring electrochemical p.olarization. The results show that the high magnetic field can refine microstructure and benefit aluminum transfer. The crystal of α-Mg is induced to orient with their c-axis parallel to the magnetic field. The corrosion studies indicate that different crystal plane of magnesium has different corrosion property. The passivating films on the α- and b-planes have higher corrosion resistance than that on the c-plane. Aligned structure affects the corrosion property of AZ61 magnesium alloy.
文摘A step stress test is carried out to study the reliability characteristics of an AlGaN/GaN high electron mobility transistor(HEMT).An anomalous critical drain-to-gate voltage with a negative temperature coefficient is observed in the stress sequence,beyond which the HEMT device starts to recover from degradation induced by early lower voltage stress.While the performance degradation featuring the drain current slump stems from electron trapping in the surface or bulk states during low-to-medium bias stress,the recovery is attributed to high field induced electron detrapping.The carrier detrapping mechanism could be helpful for lessening the trapping-related performance degradation of a GaN-based HEMT.
基金Funded by the National 863 High Technology Research Program(No.2007AA03Z548)National Natural Science Foundation of China(No.50971066)+2 种基金Research Fund for the Doctoral Program of Higher Education of China (No.20070299004)Jiangsu Provincial ‘333’ Project of Training the High-level Talents Foundation (No.2008-46)Jiangsu Provincial Science Supporting Item (No.BE2009127)
文摘In-situ TiB2/7055Al nanocomposites are fabricated by in situ melt chemical reaction from 7055Al-K2TiF6-KBF4 system under high intensity ultrasonic field,and the mechanism and kinetic model of in-situ melt chemical reaction are investigated.X-ray diffraction (XRD) and scanning electron microscope (SEM) analyses indicate that the sizes of in-situ TiB2 nanoparticles are in the range of 80-120 nm.The results of ice-water quenched samples show that the whole process contains four stages,and the overall in-situ reaction time is 10 minutes.The in situ synthesis process is controlled mainly by chemical reaction in earlier stage (former 3 minutes),and by the particulate diffusing in later stage.The mechanism of key reaction between Al3Ti and AlB2 under high intensity ultrasonic in the 7055Al-K2TiF6-KBF4 system is the reaction-diffusion-crack-rediffusion.Furthermore,the reactive kinetic models in 7055Al-K2TiF6-KBF4 system are established.
基金This work has been partially performed under the financial supports from the National Natural Science Foundation of China (Grant No.50204004)the National Fundamental Research Project - new generation steel research project of China (Grant No.G1998061
文摘Compression waves propagating through molten metals are contributed to degassing, accelerating reaction rate,removing exclusions from molten metals and refining solidification structures during metallurgical processing of materials. In the present study, two electromagnetic methods are proposed to generate intense compression wavesdirectly in liquid metals. One is the simultaneous imposition of a high frequency electrical current field and a staticmagnetic field; the other is that of a high frequency magnetic field and a static magnetic field. A mathematical modelbased on compressible fluid dynamics and electromagnetic fields theory has been developed to derive pressure distributions of the generated waves in a metal. It shows that the intensity of compression waves is proportional to thatof the high frequency electromagnetic force. And the frequency is the same as that of the imposed electromagneticforce. On the basis of theoretical analyses, pressure change in liquid gallium was examined by a pressure transducerunder various conditions. The observed results approximately agreed with the predictions derived from the theoreticalanalyses and calculations. Moreover, the effect of the generated waves on improvement of solidification structureswas also examined. It shows that the generated compression waves can refine solidification structures when they wereapplied to solidification process of Sn-Pb alloy. This study indicates a new method to generate compression wavesby imposing high frequency electromagnetic force locally on molten metals and this kind of compression waves canprobably overcome the difficulties when waves are excited by mechanical vibration in high temperature environments.
基金supported by the National High-Tech Research and Development Program of China(No.2007AA03Z519)the Talents Introduction and Discipline Innovation Program for Higher Education(No.B07015)the Program of "High Grade Numerical Control Machine Tool and Basic Equipment" Major Science and Technology Project(No.2012ZX04010031)
文摘To investigate the influence of high magnetic field (HMF) on the solidification microstructure of Cu-25wt.%Ag alloy, the Cu-25wt.%Ag alloy was prepared under HMF of 12 T, and for comparison, the alloy solidified without HMF was also fabricated. Macro and microstructures of the alloys were observed using the stereomicroscope, and scanning electron microscope, field emission scanning electron microscopy. The weight percentages of the pro-eutectic and eutectic, Cu phase and Ag phase in eutectic, and precipitates of Ag phase in pro-eutectic were analyzed by using of IPP software. Results show that the morphology of the column dendrites changes into cellular dendrites and the grains are refined under HMF of 12 T. Meanwhile, the thickness of the eutectic wall increases, but the sizes of Cu phase and Ag phase and the eutectic lamellar spacings are decreased. The Ag precipitates in the Cu matrix become coarser and sparser. The weight percentage variation of the phases in the microstructure and the Cu-Ag binary phase diagram reveals that the eutectic point moves to the left of the eutectic point in the equilibrium condition and the supersaturated solid solubility of Ag decreases under HMF.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51425401,51690161,51574073,and 51774086)Fundamental Research Funds for the Central Universities,China(Grant Nos.N170902002 and N170908001)Liaoning Innovative Research Team in University,China(Grant No.LT2017011)
文摘We present a review of the principal developments in the evolution and synergism of solute and particle migration in a liquid melt in high-gradient magnetic fields and we also describe their effects on the solidification microstructure of alloys.Diverse areas relevant to various aspects of theory and applications of high-gradient magnetic field-controlled migration of solutes and particles are surveyed.They include introduction,high-gradient magnetic field effects,migration behavior of solute and particles in high-gradient magnetic fields,microstructure evolution induced by high-gradient magnetic fieldcontrolled migrations of solute and particles,and properties of materials modified by high-gradient magnetic field-tailored microstructure.Selected examples of binary and multiphase alloy systems are presented and examined,with the main focus on the correlation between the high-gradient magnetic field-modified migration and the related solidification microstructure evolution.Particular attention is given to the mechanisms responsible for the microstructure evolution induced by highgradient magnetic fields.
基金We gratefully acknowledge the financial support of the National Key Research and Development Program of China(2016YFA0401700).
文摘Wuhan National High Magnetic Field Center(WHMFC)at Huazhong University of Science and Technology is one of the top-class research centers in the world,which can offer pulsed fields up to 90.6 T with different field waveforms for scientific research and has passed the final evaluation of the Chinese government in 2014.This paper will give a brief introduction of the facility and the development status of pulsed magnetic fields research at WHMFC.In addition,it will describe the application development of pulsed magnetic fields in both scientific and industrial research.
基金This work was financially supported by the National Natural Science Foundation of China(Nos.52174375 and 51690163)the fund of the State Key Laboratory of Solidification Processing in NWPU(No.2021-TS-01)+1 种基金the Innovation Capability Support Program of Shaanxi(No.2020KJXX-073)the Fundamental Research Funds for the Central Universities.
文摘The liquid phase separation behavior and the evolution of the solidification microstructure of a binary Cu_(50)Fe_(50) alloy were investigated under the conditions of without and with a 10 T magnetic field,with different undercooling during the solidification process.Results show that the combined effect of Stokes motion and Marangoni convection leads to the formation of the core-shell structure under the condition without the magnetic field.In addition,specific gravity segregation is reinforced by increasing the undercooling,resulting in Fe-rich phase drifts towards the sample edge.In the 10 T magnetic field,the Fe-rich phase is elongated in the parallel direction of the magnetic field under the action of demagnetization energy due to the difference of static magnetic energy and surface energy.In the vertical direction,through the action of Lorentz force,the convection in the melt is inhibited and Fe-rich phase becomes more dispersed.Meanwhile,the diffusion of the two phases and the coagulation of the Fe-rich phases are also restrained under the magnetic field,therefore,the phase volume fraction of the Fe-rich phase decreases at the same undercooling in the 10 T magnetic field.The magnetic field inhibits the segregation behavior in the vertical direction of the magnetic field,and at the same time,improves the gravitational segregation to a certain extent,which has a very important impact on microstructure regulation.
基金supported by the National Natural Science Foundation of China (No. 50674018)
文摘The effect of high magnetic fields on the morphology of Al-Mn phases was investigated. It is found that the tropism and the alignment of Al6Mn precipitated phases become regular under high magnetic fields. The stronger the high magnetic fields, the more regular the alignment of Al6Mn precipitated phases. Al6Mn precipitated phases can generate oriented alignment and aggregation under high magnetic fields through the observation of the quenched microstructure of the Al-Mn alloy at different temperatures. Meanwhile, the number of Al6Mn phases increases continuously along with the increasing function time of high magnetic fields. X-ray diffraction also indicates that Al6Mn phases generate obvious tropism under high magnetic fields. The process of aggregation and growth of Al6Mn precipitated phases under the function of high magnetic fields after orientation were analyzed and discussed.
文摘High magnetic field shielding has been increasingly important for engineering design in recent years. In this report, a cylindric shield made from soft iron is studied using FEM (finite element method) analysis and COlnpared with experiments. The residual fields inside the shield are calculated and measured in both parallel and perpendicular fields up to 2000 Gs. The calculated results are compared with the experiments, and the input B-H curve is modified for a better conformity. The results indicate that the covers could greatly improve the shielding performance of the cylindric shield in our research. The comparison result shows that a proper B-H curve, which can well describe the material properties, is very important in FEM analysis and should be selected carefully.