With advanced research for dielectrics including capacitors in DRAMs, decoupling filters in microcircuits and insulating gates in transistors, a lot of demand for the new challenging of high-k materials in semiconduct...With advanced research for dielectrics including capacitors in DRAMs, decoupling filters in microcircuits and insulating gates in transistors, a lot of demand for the new challenging of high-k materials in semiconductor industries has been emerged. This study explores and addresses the experimental approach for composite materials with one of the major concerns of high capacitance, and low leakage, as well as ease of integration technology. The characteristics of Al<sub>2</sub>O<sub>3</sub> supported HfO<sub>2</sub> (AHO) thin films for a series of different Hf ratios with Al<sub>2</sub>O<sub>3</sub> dielectrics by atomic layer deposition demonstrated as a candidate material. A composite AHO films with the homogeneous compositions of Al and Hf atoms into the Al-Hf-O mixed oxide system could stabilize the polycrystalline structure with increasing of dielectric constant (k) and decreasing of leakage current density, as well as a higher breakdown voltage than HfO<sub>2</sub> film on its own. 70 nm thick AHO thin films with different composition of Al and Hf contents were prepared by atomic layer deposition technique on titanium nitride (TiN) and silicon dioxide (SiO<sub>2</sub>) coated Si substrates. Photolithography and metal lift-off technique were used for the device fabrication of the metal-insulator-metal (MIM) capacitor structures. AHO films on TiN/SiO<sub>2</sub>/Si were measured by semiconductor analyzer and source/ measure system with probe station in the voltage range from -5 to 5 V with a frequency range from 10 kHz to 1 MHz were used to conduct capacitance-voltage (C-V) measurements with low/medium frequency range and current-voltage (I-V) measurements. It was found that Au/AHO/TiN/SiO<sub>2</sub>/Si MIM capacitors demonstrate a capacitance density of 1.5 - 4.5 fF/μm<sup>2</sup> at 10 kHz, a loss tangent of 0.02 - 0.04 at 10 kHz, dielectric constant of 11.7 - 35.5 depending on the composition and a low leakage current of 1.7 × 10<sup>-9</sup> A/cm<sup>2</sup> at 0.5 MV/cm at room temperature. The acquired experimental results could show the possibility of compositional alloy thin films that could potentially replace or open new market for high-k challenges in semiconductor technology.展开更多
<span style="white-space:normal;">The study of high dielectric materials has received great attention lately as a key passive component for the application of metal-insulator-metal (MIM) capacitors. In...<span style="white-space:normal;">The study of high dielectric materials has received great attention lately as a key passive component for the application of metal-insulator-metal (MIM) capacitors. In this paper, 50 nm thick Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;"> thin films have been prepared by atomic layer deposition technique on indium tin oxide (ITO) pre-coated glass substrates and titanium nitride (TiN) coated Si substrates with typical MIM capacitor structure. Photolithography and metal lift-off technique were used for processing of the MIM capacitors. Semiconductor Analyzer with probe station was used to perform capacitance-voltage (C-V) characterization with low-medium frequency range. Current-voltage (I-V) characteristics of MIM capacitors were measured on precision source/measurement system. The performance of Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;"> films of MIM capacitors on glass was examined in the voltage range from <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span></span></span>5 to 5 V with a frequency range from 10 kHz to 5 MHz. Au/Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">/ITO/Glass MIM capacitors demonstrate a capacitance density of 1.6 fF/μm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;">at 100 kHz, a loss tangent ~0.005 at 100 kHz and a leakage current of 1.79 × 10</span><sup style="white-space:normal;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span></span></span>8</sup><span style="white-space:normal;"> A/cm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;"> at 1 MV/cm (5 V) at room temperature. Au/Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">/TiN/Si MIM capacitors demonstrate a capacitance density of 1.5 fF/μm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;"> at 100 kHz, a loss tangent ~0.007 at 100 kHz and a lower leakage current of 2.93 × 10</span><sup style="white-space:normal;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span></span></span>10</sup><span style="white-space:normal;"> A/cm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;"> at 1 MV/cm (5 V) at room temperature. The obtained electrical properties could indicate a promising application of MIM Capacitors.</span>展开更多
Hafnium oxide thin films doped with different concentrations of yttrium are prepared on Si(100) substrates at room temperature using a reactive magnetron sputtering system.The effects of Y content on the bonding str...Hafnium oxide thin films doped with different concentrations of yttrium are prepared on Si(100) substrates at room temperature using a reactive magnetron sputtering system.The effects of Y content on the bonding structure,crystallographic structure,and electrical properties of Y-doped HfO2 films are investigated.The x-ray photoelectron spectrum(XPS) indicates that the core level peak positions of Hf 4 f and O 1 s shift toward lower energy due to the structure change after Y doping.The depth profiling of XPS shows that the surface of the film is completely oxidized while the oxygen deficiency emerges after the stripping depths have increased.The x-ray diffraction and high resolution transmission electron microscopy(HRTEM) analyses reveal the evolution from monoclinic HfO2 phase towards stabilized cubic HfO2 phase and the preferred orientation of(111) appears with increasing Y content,while pure HfO2 shows the monoclinic phase only.The leakage current and permittivity are determined as a function of the Y content.The best combination of low leakage current of 10-7 A/cm^2 at 1 V and a highest permittivity value of 29 is achieved when the doping ratio of Y increases to 9 mol%.A correlation among Y content,phase evolution and electrical properties of Y-doped HfO2 ultra-thin film is investigated.展开更多
文摘With advanced research for dielectrics including capacitors in DRAMs, decoupling filters in microcircuits and insulating gates in transistors, a lot of demand for the new challenging of high-k materials in semiconductor industries has been emerged. This study explores and addresses the experimental approach for composite materials with one of the major concerns of high capacitance, and low leakage, as well as ease of integration technology. The characteristics of Al<sub>2</sub>O<sub>3</sub> supported HfO<sub>2</sub> (AHO) thin films for a series of different Hf ratios with Al<sub>2</sub>O<sub>3</sub> dielectrics by atomic layer deposition demonstrated as a candidate material. A composite AHO films with the homogeneous compositions of Al and Hf atoms into the Al-Hf-O mixed oxide system could stabilize the polycrystalline structure with increasing of dielectric constant (k) and decreasing of leakage current density, as well as a higher breakdown voltage than HfO<sub>2</sub> film on its own. 70 nm thick AHO thin films with different composition of Al and Hf contents were prepared by atomic layer deposition technique on titanium nitride (TiN) and silicon dioxide (SiO<sub>2</sub>) coated Si substrates. Photolithography and metal lift-off technique were used for the device fabrication of the metal-insulator-metal (MIM) capacitor structures. AHO films on TiN/SiO<sub>2</sub>/Si were measured by semiconductor analyzer and source/ measure system with probe station in the voltage range from -5 to 5 V with a frequency range from 10 kHz to 1 MHz were used to conduct capacitance-voltage (C-V) measurements with low/medium frequency range and current-voltage (I-V) measurements. It was found that Au/AHO/TiN/SiO<sub>2</sub>/Si MIM capacitors demonstrate a capacitance density of 1.5 - 4.5 fF/μm<sup>2</sup> at 10 kHz, a loss tangent of 0.02 - 0.04 at 10 kHz, dielectric constant of 11.7 - 35.5 depending on the composition and a low leakage current of 1.7 × 10<sup>-9</sup> A/cm<sup>2</sup> at 0.5 MV/cm at room temperature. The acquired experimental results could show the possibility of compositional alloy thin films that could potentially replace or open new market for high-k challenges in semiconductor technology.
文摘<span style="white-space:normal;">The study of high dielectric materials has received great attention lately as a key passive component for the application of metal-insulator-metal (MIM) capacitors. In this paper, 50 nm thick Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;"> thin films have been prepared by atomic layer deposition technique on indium tin oxide (ITO) pre-coated glass substrates and titanium nitride (TiN) coated Si substrates with typical MIM capacitor structure. Photolithography and metal lift-off technique were used for processing of the MIM capacitors. Semiconductor Analyzer with probe station was used to perform capacitance-voltage (C-V) characterization with low-medium frequency range. Current-voltage (I-V) characteristics of MIM capacitors were measured on precision source/measurement system. The performance of Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;"> films of MIM capacitors on glass was examined in the voltage range from <span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span></span></span>5 to 5 V with a frequency range from 10 kHz to 5 MHz. Au/Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">/ITO/Glass MIM capacitors demonstrate a capacitance density of 1.6 fF/μm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;">at 100 kHz, a loss tangent ~0.005 at 100 kHz and a leakage current of 1.79 × 10</span><sup style="white-space:normal;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span></span></span>8</sup><span style="white-space:normal;"> A/cm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;"> at 1 MV/cm (5 V) at room temperature. Au/Al</span><sub style="white-space:normal;">2</sub><span style="white-space:normal;">O</span><sub style="white-space:normal;">3</sub><span style="white-space:normal;">/TiN/Si MIM capacitors demonstrate a capacitance density of 1.5 fF/μm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;"> at 100 kHz, a loss tangent ~0.007 at 100 kHz and a lower leakage current of 2.93 × 10</span><sup style="white-space:normal;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;"><span style="white-space:nowrap;">−</span></span></span></span>10</sup><span style="white-space:normal;"> A/cm</span><sup style="white-space:normal;">2</sup><span style="white-space:normal;"> at 1 MV/cm (5 V) at room temperature. The obtained electrical properties could indicate a promising application of MIM Capacitors.</span>
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51272034 and 51672032)the Fundamental Research Funds for the Central Universities,China(Grant No.DUT17ZD211)
文摘Hafnium oxide thin films doped with different concentrations of yttrium are prepared on Si(100) substrates at room temperature using a reactive magnetron sputtering system.The effects of Y content on the bonding structure,crystallographic structure,and electrical properties of Y-doped HfO2 films are investigated.The x-ray photoelectron spectrum(XPS) indicates that the core level peak positions of Hf 4 f and O 1 s shift toward lower energy due to the structure change after Y doping.The depth profiling of XPS shows that the surface of the film is completely oxidized while the oxygen deficiency emerges after the stripping depths have increased.The x-ray diffraction and high resolution transmission electron microscopy(HRTEM) analyses reveal the evolution from monoclinic HfO2 phase towards stabilized cubic HfO2 phase and the preferred orientation of(111) appears with increasing Y content,while pure HfO2 shows the monoclinic phase only.The leakage current and permittivity are determined as a function of the Y content.The best combination of low leakage current of 10-7 A/cm^2 at 1 V and a highest permittivity value of 29 is achieved when the doping ratio of Y increases to 9 mol%.A correlation among Y content,phase evolution and electrical properties of Y-doped HfO2 ultra-thin film is investigated.
基金Supported by the National Natural Science Foundation of China(11275203,U1732148)National Key Scientific Instrument and Equipment Development Project(2011YQ130018)Technological Development Grant of Hefei Science Center of CAS(2014TDG-HSC002)