期刊文献+
共找到19,988篇文章
< 1 2 250 >
每页显示 20 50 100
Field test of high-power microwave-assisted mechanical excavation for deep hard iron ore 被引量:1
1
作者 Feng Lin Xia-Ting Feng +5 位作者 Shiping Li Xiao Hai Jiuyu Zhang Xiangxin Su Tianyang Tong Jianchun Song 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期1922-1935,共14页
Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the re... Microwave-assisted mechanical excavation has great application prospects in mines and tunnels,but there are few field experiments on microwave-assisted rock breaking.This paper takes the Sishanling iron mine as the research object and adopts the self-developed high-power microwave-induced fracturing test system for hard rock to conduct field experiments of microwave-induced fracturing of iron ore.The heating and reflection evolution characteristics of ore under different microwave parameters(antenna type,power,and working distance)were studied,and the optimal microwave parameters were obtained.Subsequently,the ore was irradiated with the optimal microwave parameters,and the cracking effect of the ore under the action of the high-power open microwave was analyzed.The results show that the reflection coefficient(standing wave ratio)can be rapidly(<5 s)and automatically adjusted below the preset threshold value(1.6)as microwave irradiation is performed.When using a right-angle horn antenna with a working distance of 5 cm,the effect of automatic reflection adjustment reaches the best among other antenna types and working distances.When the working distance is the same,the average temperature of the irradiation surface and the area of the high-temperature area under the action of the two antennas(right-angled and equal-angled horn antenna)are basically the same and decrease with the increase of working distance.The optimal microwave parameters are:a right-angle horn antenna with a working distance of 5 cm.Subsequently,in further experiments,the optimal parameters were used to irradiate for 20 s and 40 s at a microwave power of 60 kW,respectively.The surface damage extended 38 cm×30 cm and 53 cm×30 cm,respectively,and the damage extended to a depth of about 50 cm.The drilling speed was increased by 56.2%and 66.5%,respectively,compared to the case when microwaves were not used. 展开更多
关键词 Microwave parameters high power Field experiment Mechanical mining
下载PDF
Source-Load Coordinated Optimal Scheduling Considering the High Energy Load of Electrofused Magnesium and Wind Power Uncertainty
2
作者 Juan Li Tingting Xu +3 位作者 Yi Gu Chuang Liu Guiping Zhou Guoliang Bian 《Energy Engineering》 EI 2024年第10期2777-2795,共19页
In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional un... In fossil energy pollution is serious and the“double carbon”goal is being promoted,as a symbol of fresh energy in the electrical system,solar and wind power have an increasing installed capacity,only conventional units obviously can not solve the new energy as the main body of the scheduling problem.To enhance the systemscheduling ability,based on the participation of thermal power units,incorporate the high energy-carrying load of electro-melting magnesiuminto the regulation object,and consider the effects on the wind unpredictability of the power.Firstly,the operating characteristics of high energy load and wind power are analyzed,and the principle of the participation of electrofusedmagnesiumhigh energy-carrying loads in the elimination of obstructedwind power is studied.Second,a two-layer optimization model is suggested,with the objective function being the largest amount of wind power consumed and the lowest possible cost of system operation.In the upper model,the high energy-carrying load regulates the blocked wind power,and in the lower model,the second-order cone approximation algorithm is used to solve the optimizationmodelwithwind power uncertainty,so that a two-layer optimizationmodel that takes into account the regulation of the high energy-carrying load of the electrofused magnesium and the uncertainty of the wind power is established.Finally,the model is solved using Gurobi,and the results of the simulation demonstrate that the suggested model may successfully lower wind abandonment,lower system operation costs,increase the accuracy of day-ahead scheduling,and lower the final product error of the thermal electricity unit. 展开更多
关键词 high energy load of electrofused magnesium wind energy consumption thermal power unit wind power uncertainty two-layer optimization
下载PDF
Application of tensor CSAMT with high-power orthogonal signal sources in Jiama porphyry copper deposit,South Tibet 被引量:2
3
作者 Peng-liang Yu Ting Qu +3 位作者 Ri-zheng He Jian-li Liu Su-fen Wang Xiao-long Chen 《China Geology》 CAS CSCD 2023年第1期37-49,共13页
The Jiama porphyry copper deposit in Tibet is one of the proven supergiant copper deposits in the Qinghai-Tibet Plateau at present,with the reserves of geological resources equivalent to nearly 20×10^(6) t.Howeve... The Jiama porphyry copper deposit in Tibet is one of the proven supergiant copper deposits in the Qinghai-Tibet Plateau at present,with the reserves of geological resources equivalent to nearly 20×10^(6) t.However,it features wavy and steep terrain,leading to extremely difficult field operation and heavy interference.This study attempts to determine the effects of the tensor controlled-source audiomagnetotellurics(CSAMT)with high-power orthogonal signal sources(also referred to as the high-power tensor CSAMT)when it is applied to the deep geophysical exploration in plateaus with complex terrain and mining areas with strong interference.The test results show that the high current provided by the highpower tensor CSAMT not only greatly improved the signal-to-noise ratio but also guaranteed that effective signals were received in the case of a long transmitter-receiver distance.Meanwhile,the tensor data better described the anisotropy of deep geologic bodies.In addition,the tests also show that when the transmitting current reaches 60 A,it is still guaranteed that strong enough signals can be received in the case of the transmitter-receiver distance of about 25 km,sounding curves show no near field effect,and effective exploration depth can reach 3 km.The 2D inversion results are roughly consistent with drilling results,indicating that the high-power tensor CSAMT can be used to achieve nearly actual characteristics of underground electrical structures.Therefore,this method has great potential for application in deep geophysical exploration in plateaus and mining areas with complex terrain and strong interference,respectively.This study not only serves as important guidance on the prospecting in the Qinghai-Tibet Plateau but also can be used as positive references for deep mineral exploration in other areas. 展开更多
关键词 Jiama porphyry copper deposit Supergiant copper polymetallic deposit Tensor CSAMT of 150 kw high power 2D inversion Deep prospecting Mineral exploration engineering Xizang(Tibet)
下载PDF
Influence of magnetic field on power deposition in high magnetic field helicon experiment
4
作者 周岩 季佩宇 +2 位作者 李茂洋 诸葛兰剑 吴雪梅 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第2期379-384,共6页
Based on high magnetic field helicon experiment(HMHX), HELIC code was used to study the effect of different magnetic fields on the power deposition under parabolic distribution. This paper is divided into three parts:... Based on high magnetic field helicon experiment(HMHX), HELIC code was used to study the effect of different magnetic fields on the power deposition under parabolic distribution. This paper is divided into three parts: preliminary calculation, actual discharge experiment and calculation. The results of preliminary calculation show that a magnetic field that is too small or too large cannot produce a good power deposition effect. When the magnetic field strength is 1200 Gs,a better power deposition can be obtained. The actual discharge experiment illustrates that the change of the magnetic field will have a certain influence on the discharge phenomenon. Finally, the results of verification calculation successfully verify the accuracy of the results of preliminary simulation. The results show that in the actual discharge experiment, it can achieve the best deposition effect when the magnetic field is 1185 Gs. 展开更多
关键词 high magnetic field helicon experiment(HMHX) HELIC code magnetic field power deposition
下载PDF
Improvement of circuit oscillation generated by underwater high voltage pulse discharges based on pulse power thyristor
5
作者 于营波 康忠健 《Plasma Science and Technology》 SCIE EI CAS CSCD 2023年第3期150-160,共11页
High voltage fracturing technology was widely used in the field of reservoir reconstruction due to its advantages of being clean, pollution-free, and high-efficiency. However, high-frequency circuit oscillation occurs... High voltage fracturing technology was widely used in the field of reservoir reconstruction due to its advantages of being clean, pollution-free, and high-efficiency. However, high-frequency circuit oscillation occurs during the underwater high voltage pulse discharge process, which brings security risks to the stability of the pulse fracturing system. In order to solve this problem, an underwater pulse power discharge system was established, the circuit oscillation generation conditions were analyzed and the circuit oscillation suppression method was proposed. Firstly, the system structure was introduced and the charging model of the energy storage capacitor was established by the state space average method. Next, the electrode high-voltage breakdown model was established through COMSOL software, the electrode breakdown process was analyzed according to the electron density distribution image, and the plasma channel impedance was estimated based on the conductivity simulation results. Then the underwater pulse power discharge process and the circuit oscillation generation condition were analyzed, and the circuit oscillation suppression strategy of using the thyristor to replace the gas spark switch was proposed. Finally, laboratory experiments were carried out to verify the precision of the theoretical model and the suppression effect of circuit oscillation. The experimental results show that the voltage variation of the energy storage capacitor, the impedance change of the pulse power discharge process, and the equivalent circuit in each discharge stage were consistent with the theoretical model. The proposed oscillation suppression strategy cannot only prevent the damage caused by circuit oscillation but also reduce the damping oscillation time by77.1%, which can greatly improve the stability of the system. This research has potential application value in the field of underwater pulse power discharge for reservoir reconstruction. 展开更多
关键词 underwater high voltage pulse discharge circuit oscillation suppression state space average method pulse power thyristor
下载PDF
Preface to Special Issue on Towards High Performance Ga_(2)O_(3) Electronics: Epitaxial Growth and Power Devices(Ⅰ)
6
作者 Genquan Han Shibing Long +2 位作者 Yuhao Zhang Yibo Wang Zhongming Wei 《Journal of Semiconductors》 EI CAS CSCD 2023年第6期4-6,共3页
There is currently great optimism within the electronics community that gallium oxide(Ga_(2)O_(3)) ultra-wide bandgap semiconductors have unprecedented prospects for eventually revolutionizing a rich variety of power ... There is currently great optimism within the electronics community that gallium oxide(Ga_(2)O_(3)) ultra-wide bandgap semiconductors have unprecedented prospects for eventually revolutionizing a rich variety of power electronic applications. Specially, benefiting from its ultra-high bandgap of around 4.8 eV, it is expected that the emerging Ga_(2)O_(3) technology would offer an exciting platform to deliver massively enhanced device performance for power electronics and even completely new applications. 展开更多
关键词 Epitaxial Growth and power Devices Preface to Special Issue on Towards high Performance Ga_(2)O_(3)Electronics power
下载PDF
975 nm multimode semiconductor lasers with high-order Bragg diffraction gratings
7
作者 Zhenwu Liu Li Zhong +1 位作者 Suping Liu Xiaoyu Ma 《Journal of Semiconductors》 EI CAS CSCD 2024年第3期38-44,共7页
The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).... The 975 nm multimode diode lasers with high-order surface Bragg diffraction gratings have been simulated and calcu-lated using the 2D finite difference time domain(FDTD)algorithm and the scattering matrix method(SMM).The periods and etch depth of the grating parameters have been optimized.A board area laser diode(BA-LD)with high-order diffraction grat-ings has been designed and fabricated.At output powers up to 10.5 W,the measured spectral width of full width at half maxi-mum(FWHM)is less than 0.5 nm.The results demonstrate that the designed high-order surface gratings can effectively nar-row the spectral width of multimode semiconductor lasers at high output power. 展开更多
关键词 laser diodes distributed Bragg reflector high order gratings high power laser diodes narrow spectrum width
下载PDF
Analysis of multiple-faults of high-voltage circuit breakers based on non-negative matrix decomposition
8
作者 Yongrong Zhou Zhaoxing Ma +1 位作者 Hao Chen Ruihua Wang 《Global Energy Interconnection》 EI CSCD 2024年第2期179-189,共11页
High-voltage circuit breakers are the core equipment in power networks,and to a certain extent,are related to the safe and reliable operation of power systems.However,their core components are prone to mechanical faul... High-voltage circuit breakers are the core equipment in power networks,and to a certain extent,are related to the safe and reliable operation of power systems.However,their core components are prone to mechanical faults.This study proposes a component separation method to detect multiple mechanical faults in circuit breakers that can achieve online real-time monitoring.First,a model and strategy are presented for obtaining mechanical voiceprint signals from circuit breakers.Subsequently,the component separation method was used to decompose the voiceprint signals of multiple faults into individual component signals.Based on this,the recognition of the features of a single-fault voiceprint signal can be achieved.Finally,multiple faults in high-voltage circuit breakers were identified through an experimental simulation and verification of the circuit breaker voiceprint signals collected from the substation site.The research results indicate that the proposed method exhibits excellent performance for multiple mechanical faults,such as spring structures and loose internal components of circuit breakers.In addition,it provides a reference method for the real-time online monitoring of high-voltage circuit breakers. 展开更多
关键词 high voltage circuit breaker Signal separation MONITOR Multiple faults power system
下载PDF
High-Voltage and Fast-Charging Lithium Cobalt Oxide Cathodes: From Key Challenges and Strategies to Future Perspectives
9
作者 Gongrui Wang Zhihong Bi +3 位作者 Anping Zhang Pratteek Das Hu Lin Zhong-Shuai Wu 《Engineering》 SCIE EI CAS CSCD 2024年第6期105-127,共23页
Lithium-ion batteries(LIBs)with the“double-high”characteristics of high energy density and high power density are in urgent demand for facilitating the development of advanced portable electronics.However,the lithiu... Lithium-ion batteries(LIBs)with the“double-high”characteristics of high energy density and high power density are in urgent demand for facilitating the development of advanced portable electronics.However,the lithium ion(Li+)-storage performance of the most commercialized lithium cobalt oxide(LiCoO_(2),LCO)cathodes is still far from satisfactory in terms of high-voltage and fast-charging capabilities for reaching the double-high target.Herein,we systematically summarize and discuss high-voltage and fast-charging LCO cathodes,covering in depth the key fundamental challenges,latest advancements in modification strategies,and future perspectives in this field.Comprehensive and elaborated discussions are first presented on key fundamental challenges related to structural degradation,interfacial instability,the inhomogeneity reactions,and sluggish interfacial kinetics.We provide an instructive summary of deep insights into promising modification strategies and underlying mechanisms,categorized into element doping(Li-site,cobalt-/oxygen-site,and multi-site doping)for improved Li+diffusivity and bulkstructure stability;surface coating(dielectrics,ionic/electronic conductors,and their combination)for surface stability and conductivity;nanosizing;combinations of these strategies;and other strategies(i.e.,optimization of the electrolyte,binder,tortuosity of electrodes,charging protocols,and prelithiation methods).Finally,forward-looking perspectives and promising directions are sketched out and insightfully elucidated,providing constructive suggestions and instructions for designing and realizing high-voltage and fast-charging LCO cathodes for next-generation double-high LIBs. 展开更多
关键词 Lithium cobalt oxide high energy/power density Fast-charging high-VOLTAGE Lithium-ion battery
下载PDF
Phase field model for electric-thermal coupled discharge breakdown of polyimide nanocomposites under high frequency electrical stress
10
作者 韩智云 李庆民 +3 位作者 李俊科 王梦溪 任瀚文 邹亮 《Plasma Science and Technology》 SCIE EI CAS CSCD 2024年第2期114-124,共11页
In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heighte... In contrast to conventional transformers, power electronic transformers, as an integral component of new energy power system, are often subjected to high-frequency and transient electrical stresses, leading to heightened concerns regarding insulation failures. Meanwhile, the underlying mechanism behind discharge breakdown failure and nanofiller enhancement under high-frequency electrical stress remains unclear. An electric-thermal coupled discharge breakdown phase field model was constructed to study the evolution of the breakdown path in polyimide nanocomposite insulation subjected to high-frequency stress. The investigation focused on analyzing the effect of various factors, including frequency, temperature, and nanofiller shape, on the breakdown path of Polyimide(PI) composites. Additionally, it elucidated the enhancement mechanism of nano-modified composite insulation at the mesoscopic scale. The results indicated that with increasing frequency and temperature, the discharge breakdown path demonstrates accelerated development, accompanied by a gradual dominance of Joule heat energy. This enhancement is attributed to the dispersed electric field distribution and the hindering effect of the nanosheets. The research findings offer a theoretical foundation and methodological framework to inform the optimal design and performance management of new insulating materials utilized in high-frequency power equipment. 展开更多
关键词 dielectric discharge breakdown high frequency power electronic transformer polyimide nanocomposites phase field model
下载PDF
Multi-source heterogeneous data access management framework and key technologies for electric power Internet of Things
11
作者 Pengtian Guo Kai Xiao +1 位作者 Xiaohui Wang Daoxing Li 《Global Energy Interconnection》 EI CSCD 2024年第1期94-105,共12页
The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initiall... The power Internet of Things(IoT)is a significant trend in technology and a requirement for national strategic development.With the deepening digital transformation of the power grid,China’s power system has initially built a power IoT architecture comprising a perception,network,and platform application layer.However,owing to the structural complexity of the power system,the construction of the power IoT continues to face problems such as complex access management of massive heterogeneous equipment,diverse IoT protocol access methods,high concurrency of network communications,and weak data security protection.To address these issues,this study optimizes the existing architecture of the power IoT and designs an integrated management framework for the access of multi-source heterogeneous data in the power IoT,comprising cloud,pipe,edge,and terminal parts.It further reviews and analyzes the key technologies involved in the power IoT,such as the unified management of the physical model,high concurrent access,multi-protocol access,multi-source heterogeneous data storage management,and data security control,to provide a more flexible,efficient,secure,and easy-to-use solution for multi-source heterogeneous data access in the power IoT. 展开更多
关键词 power Internet of Things Object model high concurrency access Zero trust mechanism Multi-source heterogeneous data
下载PDF
Microstructure Distribution Characteristics of High-Strength Aluminum Alloy Thin-Walled Tubes during Multi-Passes Hot Power Backward Spinning Process
12
作者 Yuan Tian Ranyang Zhang +1 位作者 Gangyao Zhao Zhenghua Guo 《Journal of Materials Science and Chemical Engineering》 2023年第7期114-121,共8页
The microstructure of the thin-walled tubes with high-strength aluminum alloy determines their final forming quality and performance. This type of tube can be manufactured by multi-pass hot power backward spinning pro... The microstructure of the thin-walled tubes with high-strength aluminum alloy determines their final forming quality and performance. This type of tube can be manufactured by multi-pass hot power backward spinning process as it can eliminate casting defects, refine microstructure and improve the plasticity of the tube. To analyze the microstructure distribution characteristics of the tube during the spinning process, a 3D coupled thermo-mechanical FE model coupled with the microstructure evolution model of the process was established under the ABAQUS environment. The microstructure evolution characteristics and laws of the tube for the whole spinning process were analyzed. The results show that the dynamic recrystallization is mainly produced in the spinning deformation zone and root area of the tube. In the first pass, the dynamic recrystallization phenomenon is not obvious in the tube. With the pass increasing, the trend of dynamic recrystallization volume percentage gradually increases and extends from the outer surface of the tube to the inner surface. The fine-grained area shows the states of concentration, dispersion, and re-concentration as the pass number increases. . 展开更多
关键词 Cast high-Strength Aluminum Alloy Tube Multi-Pass Hot power Backward Spinning FE Simulation Microstructure Evolution
下载PDF
Fabrication and testing of phase change heat sink for high power LED 被引量:1
13
作者 向建化 张春良 +2 位作者 江帆 刘晓初 汤勇 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2011年第9期2066-2071,共6页
A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-gr... A novel phase change heat sink was fabricated for packaging cooling of high power light emitting diode (LED). 3D structures as enhanced boiling structure in the evaporation surface were composed of a spiral micro-groove along circumferential direction and radial micro-grooves which were processed by ploughing-extrusion (P-E) and stamping, respectively. Meanwhile, the cycle power of refrigerant was supplied by wick of sintered copper powder on internal surface of phase change heat sink. Operational characteristics were tested under different heat loads and refrigerants. The experimental results show that phase change heat sink is provided with a good heat transfer capability and the temperature of phase change heat sink reaches 86.8 ℃ under input power of 10 W LED at ambient temperature of 20 ℃. 展开更多
关键词 high power light emitting diode phase change heat sink enhanced boiling WICK heat transfer performance
下载PDF
High Brightness,High Power Density Fiber Coupling of High Power Laser Diode
14
作者 王晓薇 肖建伟 +5 位作者 王仲明 马骁宇 刘宗顺 方高瞻 张敬明 冯小明 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2001年第9期1112-1115,共4页
The output radiation from the 100μm×1μm aperture of a high power Laser Diode (LD) is efficiently coupled into a 50μm multimode optical fiber.The fiber output of the high power LD with high brightness and high ... The output radiation from the 100μm×1μm aperture of a high power Laser Diode (LD) is efficiently coupled into a 50μm multimode optical fiber.The fiber output of the high power LD with high brightness and high power density is achieved.The power density is up to 3 6×104W/cm2 and the coupling efficiency is 70%.The extreme divergence and the astigmatism of high power LDs require the optics with complex lens structures and high performance.A double-curved lens with two crossed cylindrical lenses structured on both sides of the glass substrate is used in the coupling system. 展开更多
关键词 high power LD double-curved lens fiber coupling high brightness high power density
下载PDF
A Low-Power High-Frequency CMOS Peak Detector
15
作者 李学初 高清运 秦世才 《Journal of Semiconductors》 EI CAS CSCD 北大核心 2006年第10期1707-1710,共4页
A low-power,high-frequency CMOS peak detector is proposed. This detector can detect RF signal and base-band signal peaks. The circuit is designed using SMIC 0.35μm standard CMOS technology. Both theoretical calculati... A low-power,high-frequency CMOS peak detector is proposed. This detector can detect RF signal and base-band signal peaks. The circuit is designed using SMIC 0.35μm standard CMOS technology. Both theoretical calculations and post simulations show that the detection error is no more than 2% for various temperatures and processes when the input amplitude is larger than 400mV. The detection bandwidth is up to 10GHz, and its static current dissipation is less than 20μA. 展开更多
关键词 CMOS peak detector lower power high frequency
下载PDF
High-Power and Ultralong-Life Aqueous Zinc-Ion Hybrid Capacitors Based on Pseudocapacitive Charge Storage 被引量:14
16
作者 Liubing Dong Wang Yang +7 位作者 Wu Yang Chengyin Wang Yang Li Chengjun Xu Shuwei Wan Fengrong He Feiyu Kang Guoxiu Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2019年第4期650-658,共9页
Rechargeable aqueous zinc-ion hybrid capacitors and zincion batteries are promising safe energy storage systems.In this study,amorphous RuO2·H2O for the first time was employed to achieve fast and ultralong-life ... Rechargeable aqueous zinc-ion hybrid capacitors and zincion batteries are promising safe energy storage systems.In this study,amorphous RuO2·H2O for the first time was employed to achieve fast and ultralong-life Zn2+storage based on a pseudocapacitive storage mechanism.In the RuO2·H2O||Zn zinc-ion hybrid capacitors with Zn(CF3SO3)2 aqueous electrolyte,the RuO2·H2O cathode can reversibly store Zn2+in a voltage window of 0.4-1.6 V(vs.Zn/Zn2+),delivering a high discharge capacity of 122 mAh g?1.In particular,the zinc-ion hybrid capacitors can be rapidly charged/discharged within 36 s with a very high power density of 16.74 kW kg?1 and a high energy density of 82 Wh kg?1.Besides,the zinc-ion hybrid capacitors demonstrate an ultralong cycle life(over 10,000 charge/discharge cycles).The kinetic analysis elucidates that the ultrafast Zn2+storage in the RuO2·H2O cathode originates from redox pseudocapacitive reactions.This work could greatly facilitate the development of high-power and safe electrochemical energy storage. 展开更多
关键词 Zinc-ion hybrid capacitor HYDROUS ruthenium oxide Ultralong LIFE Redox PSEUDOCAPACITANCE high power
下载PDF
Simulation and experimental study of high power microwave damage effect on AlGaAs/InGaAs pseudomorphic high electron mobility transistor 被引量:8
17
作者 于新海 柴常春 +2 位作者 刘阳 杨银堂 席晓文 《Chinese Physics B》 SCIE EI CAS CSCD 2015年第4期525-529,共5页
The high power microwave (HPM) damage effect on the AIGaAs/InGaAs pseudomorphic high electron mobility transistor (pHEMT) is studied by simulation and experiments. Simulated results suggest that the HPM damage to ... The high power microwave (HPM) damage effect on the AIGaAs/InGaAs pseudomorphic high electron mobility transistor (pHEMT) is studied by simulation and experiments. Simulated results suggest that the HPM damage to pHEMT is due to device burn-out caused by the emerging current path and strong electric field beneath the gate. Besides, the results demonstrate that the damage power threshold decreases but the energy threshold slightly increases with the increase of pulse-width, indicating that HPM with longer pulse-width requires lower power density but more energy to cause the damage to pHEMT. The empirical formulas are proposed to describe the pulse-width dependence. Then the experimental data validate the pulse-width dependence and verify that the proposed formula P = 55τ^-0.06 is capable of quickly and accurately estimating the HPM damage susceptibility of pHEMT. Finally the interior observation of damaged samples by scanning electron microscopy (SEM) illustrates that the failure mechanism of the HPM damage to pHEMT is indeed device bum-out and the location beneath the gate near the source side is most susceptible to bum-out, which is in accordance with the simulated results. 展开更多
关键词 PHEMT damage mechanism high power microwave pulse-width
下载PDF
Synthesis and properties of Cr-Al-Si-N films deposited by hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and DC pulse sputtering 被引量:12
18
作者 Min Su KANG Tie-gang WANG +2 位作者 Jung Ho SHIN Roman NOWAK Kwang Ho KIM 《中国有色金属学会会刊:英文版》 CSCD 2012年第S3期729-734,共6页
The CrN and Cr-Al-Si-N films were deposited on Si wafer and SUS 304 substrates by a hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and a DC pulse sputtering using Cr and AlSi targets under... The CrN and Cr-Al-Si-N films were deposited on Si wafer and SUS 304 substrates by a hybrid coating system with high power impulse magnetron sputtering (HIPIMS) and a DC pulse sputtering using Cr and AlSi targets under N2/Ar atmosphere.By varying the sputtering current of the AlSi target in the range of 0-2.5 A,both the Al and Si contents in the films increased gradually from 0 to 19.1% and 11.1% (mole fraction),respectively.The influences of the AlSi cathode DC pulse current on the microstructure,phase constituents,mechanical properties,and oxidation behaviors of the Cr-Al-Si-N films were investigated systematically.The results indicate that the as-deposited Cr-Al-Si-N films possess the typical nanocomposite structure,namely the face centered cubic (Cr,Al)N nano-crystallites are embedded in the amorphous Si3N4 matrix.With increasing the Al and Si contents,the hardness of the film first increases from 20.8 GPa for the CrN film to the peak value of 29.4 GPa for the Cr0.23Al0.14Si0.07 N film,and then decreases gradually.In the meanwhile,the Cr0.23Al0.14Si0.07N film also possesses excellent high-temperature oxidation resistance that is much better than that of the CrN film at 900 or 1000 °C. 展开更多
关键词 Cr-Al-Si-N film high power IMPULSE MAGNETRON SPUTTERING DC pulsed SPUTTERING high-temperature oxidation resistance
下载PDF
Effect of lens constants optimization on the accuracy of intraocular lens power calculation formulas for highly myopic eyes 被引量:6
19
作者 Jia-Qing Zhang Xu-Yuan Zou +3 位作者 Dan-Ying Zheng Wei-Rong Chen Ao Sun Li-Xia Luo 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2019年第6期943-948,共6页
AIM: To evaluate the effect of different lens constant optimization methods on the accuracy of intraocular lens(IOL) power calculation formulas for highly myopic eyes.METHODS: This study comprised 108 eyes of 94 conse... AIM: To evaluate the effect of different lens constant optimization methods on the accuracy of intraocular lens(IOL) power calculation formulas for highly myopic eyes.METHODS: This study comprised 108 eyes of 94 consecutive patients with axial length(AL) over 26 mm undergoing phacoemulsification and implantation of a Rayner(Hove, UK) 920H IOL. Formulas were evaluated using the following lens constants: manufacturer’s lens constant, User Group for Laser Interference Biometry(ULIB) constant, and optimized constant for long eyes. Results were compared with Barrett Universal II formula, original Wang-Koch AL adjustment method, and modified Wang-Koch AL adjustment method. The outcomes assessed were mean absolute error(MAE) and percentage of eyes with IOL prediction errors within ±0.25, ±0.50, and ±1.0 diopter(D). The nonparametric method, Friedman test, was used to compare MAE performance among constants.RESULTS: Optimized constants could significantly reduce the MAE of SRK/T, Hoffer Q, and Holladay 1 formulas compared with manufacturer’s lens constant, whereas the percentage of eyes with IOL prediction errors within ±0.25, ±0.50, and ±1.0 D had no statistically significant differences. Optimized lens constant for long eyes alone showed non-significant refractive advantages over the ULIB constant. Barrett Universal II formula and formulas with AL adjustment showed significantly higher accuracy in highly myopic eyes(P<0.001). CONCLUSION: Lens constant optimization for the subset of long eyes reduces the refractive error only to a limited extent for highly myopic eyes. 展开更多
关键词 high MYOPIA CATARACT INTRAOCULAR LENS power LENS constant OPTIMIZATION prediction error
下载PDF
Damage effect and mechanism of the GaAs high electron mobility transistor induced by high power microwave 被引量:5
20
作者 刘阳 柴常春 +2 位作者 杨银堂 孙静 李志鹏 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第4期461-466,共6页
In this paper, we present the damage effect and mechanism of high power microwave (HPM) on AIGaAs/GaAs pseudomorphic high-electron-mobility transistor (pHEMT) of low-noise amplifier (LNA). A detailed investigati... In this paper, we present the damage effect and mechanism of high power microwave (HPM) on AIGaAs/GaAs pseudomorphic high-electron-mobility transistor (pHEMT) of low-noise amplifier (LNA). A detailed investigation is carried out by simulation and experiment study. A two-dimensional electro-thermal model of the typical GaAs pHEMT induced by HPM is established in this paper. The simulation result reveals that avalanche breakdown, intrinsic excitation, and thermal breakdown all contribute to damage process. Heat accumulation occurs during the positive half cycle and the cylinder under the gate near the source side is most susceptible to burn-out. Experiment is carried out by injecting high power microwave into GaAs pHEMT LNA samples. It is found that the damage to LNA is because of the burn-out at first stage pHEMT. The interiors of the damaged samples are observed by scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS). Experimental results accord well with the simulation of our model. 展开更多
关键词 low noise amplifier HEMT high power microwave damage effect
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部