The effects of vacuum assistance on the microstructure and mechanical properties of high pressure die cast A390alloy at different slow shot speeds were evaluated.Plate-shaped specimens of hypereutectic A390aluminum al...The effects of vacuum assistance on the microstructure and mechanical properties of high pressure die cast A390alloy at different slow shot speeds were evaluated.Plate-shaped specimens of hypereutectic A390aluminum alloy were produced on a TOYO BD?350V5cold chamber die casting machine incorporated with a self-improved TOYO vacuum system.According to the results,the vacuum pressure inside the die cavity increased linearly with the increasing slow shot speed at the beginning of mold filling.Meanwhile,tensile properties of vacuum die castings were deteriorated by the porosity content.In addition,the average primary silicon size decreased from23to14μm when the slow shot speed increased from0.05to0.2m/s,which has a binary functional relationship with the slow shot speed.After heat treatment,microstructural morphologies revealed that needle-shaped and thin-flaked eutectic silicon particles became rounded while Al2Cu dissolved intoα(Al)matrix.Furthermore,the fractography revealed that the fracture mechanism has evolved from brittle transgranular fracture to a fracture mode with many dimples after heat treatment.展开更多
Element parameters including volume filled ratio,surface dimensionless distance,and surface filled ratio for DFDM(direct finite difference method)were proposed to describe shape and location of free surfaces in castin...Element parameters including volume filled ratio,surface dimensionless distance,and surface filled ratio for DFDM(direct finite difference method)were proposed to describe shape and location of free surfaces in casting mold filling processes.A mathematical model of the filling process was proposed specially considering the mass,momentum and heat transfer in the vicinity of free surfaces.Furthermore,a method for gas entrapment was established by tracking flow of entrapped gas.The model and method were applied to practical ADC1 high pressure die castings.The gas entrapment prediction was compared with the fraction and maximum size of porosities in the different casting parts.The comparison shows validity of the proposed model and method.The study indicates that final porosities in high pressure die castings are dependent on both gas entrapment during mold filling process and pressure transfer within solidification period.展开更多
In this paper,the research progress of the interfacial heat transfer in high pressure die casting(HPDC)is reviewed.Results including determination of the interfacial heat transfer coefficient(IHTC),influence of castin...In this paper,the research progress of the interfacial heat transfer in high pressure die casting(HPDC)is reviewed.Results including determination of the interfacial heat transfer coefficient(IHTC),influence of casting thickness,process parameters and casting alloys on the IHTC are summarized and discussed.A thermal boundary condition model was developed based on the two correlations:(a)IHTC and casting solid fraction and(b)IHTC peak value and initial die surface temperature.The boundary model was then applied during the determination of the temperature field in HPDC and excellent agreement was found.展开更多
The high pressure die casting (HPDC) process is one of the fastest growing and most efficient methods for the production of complex shape castings of magnesium and aluminum alloys in today's manufacturing industry...The high pressure die casting (HPDC) process is one of the fastest growing and most efficient methods for the production of complex shape castings of magnesium and aluminum alloys in today's manufacturing industry. In this study, a high pressure die casting experiment using AZ91D magnesium alloy was conducted, and the temperature profiles inside the die were measured. By using a computer program based on solving the inverse heat problem, the metal/die interfacial heat transfer coefficient (IHTC) was calculated and studied. The results show that the IHTC between the metal and die increases right after the liquid metal is brought into the cavity by the plunger, and decreases as the solidification process of the liquid metal proceeds until the liquid metal is completely solidified, when the IHTC tends to be stable. The interfacial heat transfer coefficient shows different characteristics under different casting wall thicknesses and varies with the change of solidification behavior.展开更多
The characteristics of defect bands in the microstructure of high pressure die casting(HPDC)AE44 magnesium alloy were investigated.Special attention was paid to the effects of process parameters during the HPDC proces...The characteristics of defect bands in the microstructure of high pressure die casting(HPDC)AE44 magnesium alloy were investigated.Special attention was paid to the effects of process parameters during the HPDC process and casting structure on the distribution of defect bands.Results show that the defect bands are solute segregation bands with the enrichment of Al,Ce and La elements,which are basically in the form of Al_(11)RE_(3) phase.There is no obvious aggregation of porosities in the defect bands.The width of the inner defect band is 4-8 times larger than that of the outer one.The variation trends of the distribution of the inner and outer defect bands are not consistent under different process parameters and at different locations of castings.This is due to the discrepancy between the formation mechanisms of double defect bands.The filling and solidification behavior of the melt near the chilling layer is very complicated,which finally leads to a fluctuation of the width and location of the outer defect band.By affecting the content and aggregation degree of externally solidified crystals(ESCs)in the cross section of die castings,the process parameters and casting structure have a great influence on the distribution of the inner defect band.展开更多
A method based on die casting experiments and mathematic modeling is presented for the determination of the heat flow density (HFD) and interfacial heat transfer coefficient (IHTC) during the high pressure die cas...A method based on die casting experiments and mathematic modeling is presented for the determination of the heat flow density (HFD) and interfacial heat transfer coefficient (IHTC) during the high pressure die casting (HPDC) process.Experiments were carried out using step shape casting and a commercial magnesium alloy,AM50.Temperature profiles were measured and recorded using thermocouples embedded inside the die. Based on these temperature readings,the HFD and IHTC were successfully determined and the calculation results show that the HFD and IHTC at the metal-die interface increases sharply right after the fast phase injection process until approaching their maximum values,after which their values decrease to a much lower level until the dies are opened.Different patterns of heat transfer behavior were found between the die and the casting at different thicknesses.The thinner the casting was,the more quickly the HFD and IHTC reached their steady states.Also,the values for both the HFD and IHTC values were different between die and casting at different thicknesses.展开更多
Al and Mg alloy high pressure die castings(HPDC)are increasingly used in automotive industries.The microstructures in the castings have decisive effect on the casting mechanical properties,in which the microstructure ...Al and Mg alloy high pressure die castings(HPDC)are increasingly used in automotive industries.The microstructures in the castings have decisive effect on the casting mechanical properties,in which the microstructure characteristics are fundamental for the investigation of the microstructure-property relation.During the past decade,the microstructure characteristics of HPDC Al and Mg alloys,especially micro-pores andα-Fe,have been investigated from two-dimensional(2D)to threedimensional with X-ray micro-computed tomography(μ-CT).This paper provides an overview of the current understanding regarding the 3D characteristics and formation mechanisms of microstructures in HPDC alloys,their spatial distributions,and the impact on mechanical properties.Additionally,it outlines future research directions for the formation and control of heterogeneous microstructures in HPDC alloys.展开更多
The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron mi...The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron microscopy(SEM)and laboratory computed tomography(CT).Results showed that the newly developed AlSi9MnMoV alloy exhibited improved mechanical properties when compared to the AlSi10MnMg alloy.The AlSi9MnMoV alloy,which was designed with trace multicomponent additions,displays a notable grain refining effect in comparison to the AlSi10MnMg alloy.Refining elements Ti,Zr,V,Nb,B promote heterogeneous nucleation and reduce the grain size of primaryα-Al.At a lower slow shot speed,the large ESCs are easier to form and gather,developing into the dendrite net and net-shrinkage.With an increase in slow shot speed,the size and number of ESCs and porosities significantly reduce.In addition,the distribution of ESCs is more dispersed and the net-shrinkage disappears.The tensile property is greatly improved by adopting a higher slow shot speed.The ultimate tensile strength is enhanced from 260.31 MPa to 290.31 MPa(increased by 11.52%),and the elongation is enhanced from 3.72%to 6.34%(increased by 70.52%).展开更多
The interfacial heat transfer behavior at the metalJshot sleeve interface in the high pressure die casting (HPDC) process of AZ91D alloy is carefully investigated. Based on the temperature measurements along the sho...The interfacial heat transfer behavior at the metalJshot sleeve interface in the high pressure die casting (HPDC) process of AZ91D alloy is carefully investigated. Based on the temperature measurements along the shot sleeve, inverse method has been developed to determine the interfacial heat transfer coefficient in the shot sleeve. Under static condition, Interracial heat transfer coefficient (IHTC) peak values are 11.9, 7,3, 8.33kWm-2K-1 at pouring zone (S2), middle zone (S5), and end zone (510), respectively. During the casting process, the IHTC curve displays a second peak of 6.1 kWm-2 K-1 at middle zone during the casting process at a slow speed of 0.3 ms 1 Subsequently, when the high speed started, the IHTC curve reached a second peal〈 of 12.9 kW m-2K-1 at end zone. Furthermore, under different slow casting speeds, both the calculated initial temperature (TIDs) and the maximum temperature (Tsimax) of shot sleeve surface first decrease from 0.1 ms-1 to 0.3 ms-1, but increase again from 0.3 ms-1 to 0.6 ms-1. This result agrees with the experimental results obtained in a series of "plate-shape" casting experiments under different slow speeds, which reveals that the amount of ESCs decreases to the minimum values at 0.3 m s-1 and increase again with the increasing casting slow speed.展开更多
Effects of natural aging and test temperature on the tensile behaviors have been studied for a highperformance cast aluminum alloy Al–10Si–1.2Cu–0.7Mn. Based on self-strengthening mechanism and spheroidization micr...Effects of natural aging and test temperature on the tensile behaviors have been studied for a highperformance cast aluminum alloy Al–10Si–1.2Cu–0.7Mn. Based on self-strengthening mechanism and spheroidization microstructures, the alloy tested at room temperature(RT) exhibits higher 0.2% proof stress(YS) of 206 MPa, ultimate tensile strength(UTS) of 331 MPa and elongation of 10%. Increasing aging time improves the YS and UTS and reduces the ductility of the alloy. Further increasing aging time beyond72 h does not signi?cantly increase the tensile strengths. Increasing test temperature significantly decreases the tensile strengths and increases the ductility of the alloy. The UTS of the alloy can be estimated by using the hardness. The Portevin–Le Chatelier effect occurs at RT due to the interactions between solid solution atoms and dislocations. Similar behaviors occurring at 250℃ are attributed to dynamic strain aging mechanism. Increasing aging time leads to decrease in the strain-hardening exponent(n) value and increase in the strain-hardening coeficient(k) value. Increasing test temperature apparently decreases the n and k values. Eutectic phase particles cracking and debonding determine the fracture mechanism of the alloy. Final failure of the alloy mainly depends on the global instability(high temperature, necking) and local instability(RT, shearing). Different tensile behaviors of the alloy are mainly attributed to different matrix strengths, phase particle strengths and damage rate.展开更多
The objective of this study is to predict grain size and heat transfer coefficient at the metal-die interface during high pressure die casting process and solidification of the magnesium alloy AM60. Multiple runs of t...The objective of this study is to predict grain size and heat transfer coefficient at the metal-die interface during high pressure die casting process and solidification of the magnesium alloy AM60. Multiple runs of the commercial casting simulation package, ProCASTTM, were used to model the mold filling and solidification events employing a range of interfacial heat transfer coefficient values. The simulation results were used to estimate the centerline cooling curve at various locations through the casting. The centerline cooling curves, together with the die temperature and the thermodynamic properties of the alloy, were then used as inputs to compute the solution to the Stefan problem of a moving phase boundary, thereby providing the through-thickness cooling curves at each chosen location of the casting, Finally, the local cooling rate was used to calculate the resulting grain size via previously established relationships. The effects of die temperature, filling time and heat transfer coefficient on the grain structure in skin region and core region were quantitatively characterized. It was observed that the grain size of skin region strongly depends on above three factors whereas the grain size of core region shows dependence on the interracial heat transfer coefficient and thickness of the samples. The grain size distribution from surface to center was estimated from the relationship between grain size and the predicted cooling rate. The prediction of grain size matches well with experimental results. A comparison of the predicted and experimentally determined grain size profiles enables the determination of the apparent interracial heat transfer coefficient for different locations.展开更多
X-ray tomography was used to characterize the porosity in high pressure die casting of AM60B alloy. In situ tensile deformation was performed to observe the change of porosities and their influences on crack initiatio...X-ray tomography was used to characterize the porosity in high pressure die casting of AM60B alloy. In situ tensile deformation was performed to observe the change of porosities and their influences on crack initiation, propagation and subsequent fracture of specimen. Results showed that four types of porosi- ties, including gas-shrinkage pore, gas pore, net-shrinkage and island-shrinkage, could be identified according to the formation mechanism and morphology characterization. During tensile deformation, it was shown that the gas-shrinkage pore and net-shrinkage, rather than gas pore or island-shrinkage, were the main sources for crack initiation. In addition, the crack propagated by interconnecting the po- rosities at the cross section with minimum efficient force bearing area. At these locations where externally solidified crystals (ESCs) were present, the crack would propagate along the ESC boundaries in an inter- granular mode, while at these locations without ESCs, the crack would propagate roughly along the direction perpendicular to the tensile stress in a combination of trans-granular and inter-granular modes.展开更多
Aluminum high pressure die casting(HPDC)technology has evolved in the past decades,enabling stronger and larger one-piece casting with significant part consolidation.It also offers a higher design freedom for more mas...Aluminum high pressure die casting(HPDC)technology has evolved in the past decades,enabling stronger and larger one-piece casting with significant part consolidation.It also offers a higher design freedom for more mass-efficient thin-walled body structures.For body structures that require excellent ductility and fracture toughness to be joined with steel sheet via self-piercing riveting(for instance,shock towers and hinge pillars,etc.),a costly T7 heat treatment comprising a solution heat treatment at elevated temperatures(450℃-500℃)followed by an over-ageing heat treatment is needed to optimize microstructure for meeting product requirement.To enable cost-efficient mass production of HPDC body structures,it is important to eliminate the expensive T7 heat treatment without sacrificing mechanical properties.Optimizing die cast alloy chemistry is a potential solution to improve fracture toughness and ductility of the HPDC components.The present study intends to tailor the Mg and Cu additions for a new Al-Si-Cr type die casting alloy(registered as A379 with The Aluminum Association,USA)to achieve the desired tensile properties without using T7 heat treatment.It was found that Cu addition should be avoided,as it is not effective in enhancing strength while degrades tensile ductility.Mg addition is very effective in improving strength and has minor impact on tensile ductility.The investigated Al-Si-Cr alloy with a nominal composition of Al-8.5wt.%Si-0.3wt.%Cr-0.2wt.%Fe shows comparable tensile properties with the T7 treated AlSi10MnMg alloy which is currently used for manufacturing shock towers and hinge pillars.展开更多
The morphology and content of the divorced eutectic in the microstructure of high pressure die casting(HPDC) magnesium alloy have a great influence on the final performance of castings. Based on the previous work conc...The morphology and content of the divorced eutectic in the microstructure of high pressure die casting(HPDC) magnesium alloy have a great influence on the final performance of castings. Based on the previous work concerning simulation of the nucleation and dendritic growth of primary α-Mg during the solidification of magnesium alloy under HPDC process, an extension was made to the formerly established CA(Cellular Automaton) model with the purpose of modeling the nucleation and growth of Mg-Al eutectic. With a temperature field and solute field obtained during simulation of the primary α-Mg dendrites as the initial condition of the modified CA model, modeling of the Mg-Al eutectic with a divorced morphology was achieved. Moreover, the simulated results were in accordance with the experimental ones regarding the distribution and content of the divorced eutectic. Taking a "cover-plate" die casting with AM60 magnesium alloy as an example, the rapid solidification with a high cooling rate at the surface layer of the casting led to a fine and uniform grain size of primary α-Mg, while the divorced eutectic at the grain boundary revealed a more dispersed and granular morphology. Islands of divorced eutectic were observed at the central region of the casting, due to the existence of ESCs(Externally Solidified Crystals) which contributed to a coarse and non-uniform grain size of primary α-Mg. The volume percentage of the eutectic β-Mg_(17)Al_(12) phase is about 2%-6% in the die casting as a whole. The numerical model established in this study is of great significance to the study of the divorced eutectic in the microstructure of die cast magnesium alloy.展开更多
The development of lightweight magnesium(Mg)alloys capable of operating at elevated temperatures of 200-300℃and the ability of using high pressure die casting for high-volume manufacturing are the most advanced devel...The development of lightweight magnesium(Mg)alloys capable of operating at elevated temperatures of 200-300℃and the ability of using high pressure die casting for high-volume manufacturing are the most advanced developments in manufacturing critical parts for internal combustion engines used in power tools.Here we report the microstructure and mechanical properties of a newly developed die-cast Mg-RE(La,Ce,Nd,Gd)-Al alloy capable of working at higher elevated temperatures of 200-300℃.The new alloy delivers the yield strength of 94 MPa at 300℃,which demonstrates a 42%increase over the benchmark AE44 high temperature die-cast Mg alloy.The new alloy also has good stiffness at elevated temperatures with its modulus only decreasing linearly by 13%from room temperature up to 300℃.Thermal analysis shows a minor peak at 364.7℃in the specific heat curve of the new alloy,indicating a good phase stability of the alloy up to 300℃.Nd and Gd have more affinity to Al for the formation of the minority of divorced Al-RE(Nd,Gd)based compounds,and the stable Al-poor Mg_(12)RE(La_(0.22)Ce_(0.13)Nd_(0.31)Gd_(0.31))Zn_(0.39)Al_(0.13)compound acts as the continuous inter-dendritic network,which contribute to the high mechanical performance and stability of the new die-cast Mg alloy at 200-300℃.展开更多
The present research work emphasized on identifying and optimizing various significant process parameters of high pressure die casting by using QFD-Taguchi based hybrid approach in order to yield the optimum casting d...The present research work emphasized on identifying and optimizing various significant process parameters of high pressure die casting by using QFD-Taguchi based hybrid approach in order to yield the optimum casting density of the A380alloy.Identification of critical process parameters,selection of appropriate orthogonal array,analysis of means and analysis of variance are employed to study the performance characteristic of the die casting process.The most critical process parameters identified and optimized by QFD-Taguchi based hybrid approach,such as the injection pressure,the molten metal temperature,the plunger velocity(first and second stage)and the die temperature were explored in the experimental work.The results show that injection pressure is the most significant factor among the selected parameters.The contribution of the injection pressure to the variation of mean casting density is around61.483%.Confidence interval(CI)has also been estimated as0.000718for95%consistency level to validate the predicted range of optimum casting density of aforesaid alloy.展开更多
During the cold-chamber high pressure die casting(HPDC) process, samples were produced to investigate the microstructure characteristics of AM60B magnesium alloy. Special attention was paid to the effects of process p...During the cold-chamber high pressure die casting(HPDC) process, samples were produced to investigate the microstructure characteristics of AM60B magnesium alloy. Special attention was paid to the effects of process parameters on the morphology and distribution of externally solidified crystals(ESCs) in the microstructure of magnesium alloy die castings, such as slow shot phase plunger velocity, delay time of pouring and fast shot phase plunger velocity. On the basis of metallographic observation and quantitative statistics, it is concluded that a lower slow shot phase plunger velocity and a longer delay time of pouring both lead to an increment of the size and percentage of the ESCs, due to the fact that a longer holding time of the melt in the shot sleeve will cause a more severe loss of the superheat. The impingement of the melt flow on the ESCs is more intensive with a higher fast shot phase plunger velocity, in such case the ESCs reveal a more granular and roundish morphology and are dispersed throughout the cross section of the castings. Based on analysis of the filling and solidification processes of the melt during the HPDC process, reasonable explanations were proposed in terms of the nucleation, growth, remelting and fragmentation of the ESCs to interpret the effects of process parameters on the morphology and distribution of the ESCs in the microstructure of magnesium alloy die castings.展开更多
Microstructural and hardness evolutions of a vacuum-assistant die-cast A380(Al-8.67 wt.%Si-3.27 wt.%Cu) alloy during heat treatment were investigated. Isothermal DSC test at 200 °C revealed that the precipitation...Microstructural and hardness evolutions of a vacuum-assistant die-cast A380(Al-8.67 wt.%Si-3.27 wt.%Cu) alloy during heat treatment were investigated. Isothermal DSC test at 200 °C revealed that the precipitation reaction in the surface layer was faster than that in the central region. This corresponded with the hardness evolution that the surface layer hardened faster. The hardness increment in the surface layer was higher than that in the central region. Further experimental evidences indicated that the differences were due to the different amounts of heterogeneous nucleation sites for precipitation in the two parts. The influence of the characteristic as-cast microstructure on the artificial aging process is analyzed and discussed in detail.展开更多
Flexibility of the CSIR-RCS, induction stirring with simultaneous air cooling process, in combination with high pressure die casting is successfully demonstrated by semi-solid rheocasting of plates performed on commer...Flexibility of the CSIR-RCS, induction stirring with simultaneous air cooling process, in combination with high pressure die casting is successfully demonstrated by semi-solid rheocasting of plates performed on commercial 2024, 6082 and 7075 wrought aluminum alloys. Tensile properties were measured for the above mentioned rheocast wrought aluminum alloys in the T6 condition. The results showed that tensile properties were close to or even in some cases exceeded the minimum specifications. The yield strength and elongation of rheocast 2024-T6 exceeded the minimum requirements of the wrought alloy in the T6 condition but the ultimate tensile strength achieved only 90% of the specification because the Mg content of the starting alloy was below the commercial alloy specification. The strengths of rheocast 6082-T6 exceeded all of the wrought alloy T6 strength targets but the elongation only managed 36% of the required minimum due to porosity, caused by incipient melting during solution heat treatment, and the presence of fine intermetallie needles in the eutectic. The yield strength of rheocast 7075 exceeded the required one and the ultimate tensile strength also managed 97% of the specification; while the elongation only reached 46% of the minimum requirement also due to incipient melting porosity caused during the solution heat treatment process.展开更多
The mold filling and solidification simulation for the high pressure die casting (HPDC) and low pressure die casting (LPDC) processes were studied. A mathematical model considering the turbulent flow and heat transfer...The mold filling and solidification simulation for the high pressure die casting (HPDC) and low pressure die casting (LPDC) processes were studied. A mathematical model considering the turbulent flow and heat transfer phenomenon during the HPDC process has been established and parallel computation technique was used for the mold filling simulation of the process. The laminar flow characteristics of the LPDC process were studied and a simplified model for the mold filling process of wheel castings has been developed. For the solidification simulation under pressure conditions, the cyclic characteristics and the complicated boundary conditions were considered and techniques to improve the computational efficiency are discussed. A new criterion for predicting shrinkage porosity of Al alloy under low pressure condition has been developed in the solidification simulation process.展开更多
基金Project(51775297)supported by the National Natural Science Foundation of ChinaProject(2015M580093)supported by the China Postdoctoral Science Foundation
文摘The effects of vacuum assistance on the microstructure and mechanical properties of high pressure die cast A390alloy at different slow shot speeds were evaluated.Plate-shaped specimens of hypereutectic A390aluminum alloy were produced on a TOYO BD?350V5cold chamber die casting machine incorporated with a self-improved TOYO vacuum system.According to the results,the vacuum pressure inside the die cavity increased linearly with the increasing slow shot speed at the beginning of mold filling.Meanwhile,tensile properties of vacuum die castings were deteriorated by the porosity content.In addition,the average primary silicon size decreased from23to14μm when the slow shot speed increased from0.05to0.2m/s,which has a binary functional relationship with the slow shot speed.After heat treatment,microstructural morphologies revealed that needle-shaped and thin-flaked eutectic silicon particles became rounded while Al2Cu dissolved intoα(Al)matrix.Furthermore,the fractography revealed that the fracture mechanism has evolved from brittle transgranular fracture to a fracture mode with many dimples after heat treatment.
基金Project(50975093)supported by the National Natural Science Foundation of ChinaProject(08-0209)supported by New Century Excellent Talent in University,Ministry of Education,ChinaProject(2009ZM0283)supported by the Fundamental Research Funds for the Central Universities,China
文摘Element parameters including volume filled ratio,surface dimensionless distance,and surface filled ratio for DFDM(direct finite difference method)were proposed to describe shape and location of free surfaces in casting mold filling processes.A mathematical model of the filling process was proposed specially considering the mass,momentum and heat transfer in the vicinity of free surfaces.Furthermore,a method for gas entrapment was established by tracking flow of entrapped gas.The model and method were applied to practical ADC1 high pressure die castings.The gas entrapment prediction was compared with the fraction and maximum size of porosities in the different casting parts.The comparison shows validity of the proposed model and method.The study indicates that final porosities in high pressure die castings are dependent on both gas entrapment during mold filling process and pressure transfer within solidification period.
基金supported by the National Major Science and Technology Program of China(2012ZX04012011)the National Nature Science Foundation of China(51275269)
文摘In this paper,the research progress of the interfacial heat transfer in high pressure die casting(HPDC)is reviewed.Results including determination of the interfacial heat transfer coefficient(IHTC),influence of casting thickness,process parameters and casting alloys on the IHTC are summarized and discussed.A thermal boundary condition model was developed based on the two correlations:(a)IHTC and casting solid fraction and(b)IHTC peak value and initial die surface temperature.The boundary model was then applied during the determination of the temperature field in HPDC and excellent agreement was found.
文摘The high pressure die casting (HPDC) process is one of the fastest growing and most efficient methods for the production of complex shape castings of magnesium and aluminum alloys in today's manufacturing industry. In this study, a high pressure die casting experiment using AZ91D magnesium alloy was conducted, and the temperature profiles inside the die were measured. By using a computer program based on solving the inverse heat problem, the metal/die interfacial heat transfer coefficient (IHTC) was calculated and studied. The results show that the IHTC between the metal and die increases right after the liquid metal is brought into the cavity by the plunger, and decreases as the solidification process of the liquid metal proceeds until the liquid metal is completely solidified, when the IHTC tends to be stable. The interfacial heat transfer coefficient shows different characteristics under different casting wall thicknesses and varies with the change of solidification behavior.
基金the National Natural Science Foundation of China(No.51805389)the Key R&D Program of Hubei Province,China(No.2021BAA048)+1 种基金the 111 Project(No.B17034)the fund of the Hubei Key Laboratory of Advanced Technology for Automotive Components,Wuhan University of Technology(No.XDQCKF2021011).
文摘The characteristics of defect bands in the microstructure of high pressure die casting(HPDC)AE44 magnesium alloy were investigated.Special attention was paid to the effects of process parameters during the HPDC process and casting structure on the distribution of defect bands.Results show that the defect bands are solute segregation bands with the enrichment of Al,Ce and La elements,which are basically in the form of Al_(11)RE_(3) phase.There is no obvious aggregation of porosities in the defect bands.The width of the inner defect band is 4-8 times larger than that of the outer one.The variation trends of the distribution of the inner and outer defect bands are not consistent under different process parameters and at different locations of castings.This is due to the discrepancy between the formation mechanisms of double defect bands.The filling and solidification behavior of the melt near the chilling layer is very complicated,which finally leads to a fluctuation of the width and location of the outer defect band.By affecting the content and aggregation degree of externally solidified crystals(ESCs)in the cross section of die castings,the process parameters and casting structure have a great influence on the distribution of the inner defect band.
基金This work was financially supported by the National Natural Science Foundation of China (No. 50675114) the National Basic Research Program of China (2006CB605208-2) The experiments were conducted at the Tsinghua-TOYO R&D Center of Magnesium and Aluminum Alloys Processing Technology with the help of engineers from the TOYO Machiuery & Metal Co., Ltd.
文摘A method based on die casting experiments and mathematic modeling is presented for the determination of the heat flow density (HFD) and interfacial heat transfer coefficient (IHTC) during the high pressure die casting (HPDC) process.Experiments were carried out using step shape casting and a commercial magnesium alloy,AM50.Temperature profiles were measured and recorded using thermocouples embedded inside the die. Based on these temperature readings,the HFD and IHTC were successfully determined and the calculation results show that the HFD and IHTC at the metal-die interface increases sharply right after the fast phase injection process until approaching their maximum values,after which their values decrease to a much lower level until the dies are opened.Different patterns of heat transfer behavior were found between the die and the casting at different thicknesses.The thinner the casting was,the more quickly the HFD and IHTC reached their steady states.Also,the values for both the HFD and IHTC values were different between die and casting at different thicknesses.
基金supported by the National Natural Science Foundation of China(Nos.51875211 and 51375171)Beijing Natural Science Foundation(No.L223001)+1 种基金Natural Science Foundation of Guangdong Province(No.2023A1515012730)the Program for New Century Excellent Talents in University in China(No.NCET-08-0209).
文摘Al and Mg alloy high pressure die castings(HPDC)are increasingly used in automotive industries.The microstructures in the castings have decisive effect on the casting mechanical properties,in which the microstructure characteristics are fundamental for the investigation of the microstructure-property relation.During the past decade,the microstructure characteristics of HPDC Al and Mg alloys,especially micro-pores andα-Fe,have been investigated from two-dimensional(2D)to threedimensional with X-ray micro-computed tomography(μ-CT).This paper provides an overview of the current understanding regarding the 3D characteristics and formation mechanisms of microstructures in HPDC alloys,their spatial distributions,and the impact on mechanical properties.Additionally,it outlines future research directions for the formation and control of heterogeneous microstructures in HPDC alloys.
基金financially supported by the National Key Research and Development Program of China(2022YFB3404201)the Major Science and Technology Project of Changchun City,Jilin Province(Grant No.20210301024GX)。
文摘The effect of slow shot speed on externally solidified crystal(ESC),porosity and tensile property in a newly developed high-pressure die-cast Al-Si alloy was investigated by optical microscopy(OM),scanning electron microscopy(SEM)and laboratory computed tomography(CT).Results showed that the newly developed AlSi9MnMoV alloy exhibited improved mechanical properties when compared to the AlSi10MnMg alloy.The AlSi9MnMoV alloy,which was designed with trace multicomponent additions,displays a notable grain refining effect in comparison to the AlSi10MnMg alloy.Refining elements Ti,Zr,V,Nb,B promote heterogeneous nucleation and reduce the grain size of primaryα-Al.At a lower slow shot speed,the large ESCs are easier to form and gather,developing into the dendrite net and net-shrinkage.With an increase in slow shot speed,the size and number of ESCs and porosities significantly reduce.In addition,the distribution of ESCs is more dispersed and the net-shrinkage disappears.The tensile property is greatly improved by adopting a higher slow shot speed.The ultimate tensile strength is enhanced from 260.31 MPa to 290.31 MPa(increased by 11.52%),and the elongation is enhanced from 3.72%to 6.34%(increased by 70.52%).
基金financially supported by the National Major Science and Technology Program of China(No.2012ZX04012011)the National Natural Science Foundation of China(No.51275269)
文摘The interfacial heat transfer behavior at the metalJshot sleeve interface in the high pressure die casting (HPDC) process of AZ91D alloy is carefully investigated. Based on the temperature measurements along the shot sleeve, inverse method has been developed to determine the interfacial heat transfer coefficient in the shot sleeve. Under static condition, Interracial heat transfer coefficient (IHTC) peak values are 11.9, 7,3, 8.33kWm-2K-1 at pouring zone (S2), middle zone (S5), and end zone (510), respectively. During the casting process, the IHTC curve displays a second peak of 6.1 kWm-2 K-1 at middle zone during the casting process at a slow speed of 0.3 ms 1 Subsequently, when the high speed started, the IHTC curve reached a second peal〈 of 12.9 kW m-2K-1 at end zone. Furthermore, under different slow casting speeds, both the calculated initial temperature (TIDs) and the maximum temperature (Tsimax) of shot sleeve surface first decrease from 0.1 ms-1 to 0.3 ms-1, but increase again from 0.3 ms-1 to 0.6 ms-1. This result agrees with the experimental results obtained in a series of "plate-shape" casting experiments under different slow speeds, which reveals that the amount of ESCs decreases to the minimum values at 0.3 m s-1 and increase again with the increasing casting slow speed.
基金supported by the Project Funded by China Postdoctoral Science Foundation(No.2015M571562)
文摘Effects of natural aging and test temperature on the tensile behaviors have been studied for a highperformance cast aluminum alloy Al–10Si–1.2Cu–0.7Mn. Based on self-strengthening mechanism and spheroidization microstructures, the alloy tested at room temperature(RT) exhibits higher 0.2% proof stress(YS) of 206 MPa, ultimate tensile strength(UTS) of 331 MPa and elongation of 10%. Increasing aging time improves the YS and UTS and reduces the ductility of the alloy. Further increasing aging time beyond72 h does not signi?cantly increase the tensile strengths. Increasing test temperature significantly decreases the tensile strengths and increases the ductility of the alloy. The UTS of the alloy can be estimated by using the hardness. The Portevin–Le Chatelier effect occurs at RT due to the interactions between solid solution atoms and dislocations. Similar behaviors occurring at 250℃ are attributed to dynamic strain aging mechanism. Increasing aging time leads to decrease in the strain-hardening exponent(n) value and increase in the strain-hardening coeficient(k) value. Increasing test temperature apparently decreases the n and k values. Eutectic phase particles cracking and debonding determine the fracture mechanism of the alloy. Final failure of the alloy mainly depends on the global instability(high temperature, necking) and local instability(RT, shearing). Different tensile behaviors of the alloy are mainly attributed to different matrix strengths, phase particle strengths and damage rate.
基金jointly supported by Canadian Network for Research and Innovation in Machining TechnologyNatural Sciences and Engineering Research Council of Canada-Automotive Partnership Canada programNRCan’s Office of Energy R&D through the Program on Energy R&D
文摘The objective of this study is to predict grain size and heat transfer coefficient at the metal-die interface during high pressure die casting process and solidification of the magnesium alloy AM60. Multiple runs of the commercial casting simulation package, ProCASTTM, were used to model the mold filling and solidification events employing a range of interfacial heat transfer coefficient values. The simulation results were used to estimate the centerline cooling curve at various locations through the casting. The centerline cooling curves, together with the die temperature and the thermodynamic properties of the alloy, were then used as inputs to compute the solution to the Stefan problem of a moving phase boundary, thereby providing the through-thickness cooling curves at each chosen location of the casting, Finally, the local cooling rate was used to calculate the resulting grain size via previously established relationships. The effects of die temperature, filling time and heat transfer coefficient on the grain structure in skin region and core region were quantitatively characterized. It was observed that the grain size of skin region strongly depends on above three factors whereas the grain size of core region shows dependence on the interracial heat transfer coefficient and thickness of the samples. The grain size distribution from surface to center was estimated from the relationship between grain size and the predicted cooling rate. The prediction of grain size matches well with experimental results. A comparison of the predicted and experimentally determined grain size profiles enables the determination of the apparent interracial heat transfer coefficient for different locations.
基金the National Natural Science Foundation of China (No.51275269)the Tsinghua University Initiative Scientific Research Program (No.20121087918)the National Science and Technology Major Project of the Ministry of Science and Technology of the People’s Republic of China (No.2012ZX04012011) for financial support
文摘X-ray tomography was used to characterize the porosity in high pressure die casting of AM60B alloy. In situ tensile deformation was performed to observe the change of porosities and their influences on crack initiation, propagation and subsequent fracture of specimen. Results showed that four types of porosi- ties, including gas-shrinkage pore, gas pore, net-shrinkage and island-shrinkage, could be identified according to the formation mechanism and morphology characterization. During tensile deformation, it was shown that the gas-shrinkage pore and net-shrinkage, rather than gas pore or island-shrinkage, were the main sources for crack initiation. In addition, the crack propagated by interconnecting the po- rosities at the cross section with minimum efficient force bearing area. At these locations where externally solidified crystals (ESCs) were present, the crack would propagate along the ESC boundaries in an inter- granular mode, while at these locations without ESCs, the crack would propagate roughly along the direction perpendicular to the tensile stress in a combination of trans-granular and inter-granular modes.
文摘Aluminum high pressure die casting(HPDC)technology has evolved in the past decades,enabling stronger and larger one-piece casting with significant part consolidation.It also offers a higher design freedom for more mass-efficient thin-walled body structures.For body structures that require excellent ductility and fracture toughness to be joined with steel sheet via self-piercing riveting(for instance,shock towers and hinge pillars,etc.),a costly T7 heat treatment comprising a solution heat treatment at elevated temperatures(450℃-500℃)followed by an over-ageing heat treatment is needed to optimize microstructure for meeting product requirement.To enable cost-efficient mass production of HPDC body structures,it is important to eliminate the expensive T7 heat treatment without sacrificing mechanical properties.Optimizing die cast alloy chemistry is a potential solution to improve fracture toughness and ductility of the HPDC components.The present study intends to tailor the Mg and Cu additions for a new Al-Si-Cr type die casting alloy(registered as A379 with The Aluminum Association,USA)to achieve the desired tensile properties without using T7 heat treatment.It was found that Cu addition should be avoided,as it is not effective in enhancing strength while degrades tensile ductility.Mg addition is very effective in improving strength and has minor impact on tensile ductility.The investigated Al-Si-Cr alloy with a nominal composition of Al-8.5wt.%Si-0.3wt.%Cr-0.2wt.%Fe shows comparable tensile properties with the T7 treated AlSi10MnMg alloy which is currently used for manufacturing shock towers and hinge pillars.
基金financially supported by the Fundamental Research Funds for the Central Universities(WUT:2017IVA036)111 Project(B17034)State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology(P2018-003)
文摘The morphology and content of the divorced eutectic in the microstructure of high pressure die casting(HPDC) magnesium alloy have a great influence on the final performance of castings. Based on the previous work concerning simulation of the nucleation and dendritic growth of primary α-Mg during the solidification of magnesium alloy under HPDC process, an extension was made to the formerly established CA(Cellular Automaton) model with the purpose of modeling the nucleation and growth of Mg-Al eutectic. With a temperature field and solute field obtained during simulation of the primary α-Mg dendrites as the initial condition of the modified CA model, modeling of the Mg-Al eutectic with a divorced morphology was achieved. Moreover, the simulated results were in accordance with the experimental ones regarding the distribution and content of the divorced eutectic. Taking a "cover-plate" die casting with AM60 magnesium alloy as an example, the rapid solidification with a high cooling rate at the surface layer of the casting led to a fine and uniform grain size of primary α-Mg, while the divorced eutectic at the grain boundary revealed a more dispersed and granular morphology. Islands of divorced eutectic were observed at the central region of the casting, due to the existence of ESCs(Externally Solidified Crystals) which contributed to a coarse and non-uniform grain size of primary α-Mg. The volume percentage of the eutectic β-Mg_(17)Al_(12) phase is about 2%-6% in the die casting as a whole. The numerical model established in this study is of great significance to the study of the divorced eutectic in the microstructure of die cast magnesium alloy.
文摘The development of lightweight magnesium(Mg)alloys capable of operating at elevated temperatures of 200-300℃and the ability of using high pressure die casting for high-volume manufacturing are the most advanced developments in manufacturing critical parts for internal combustion engines used in power tools.Here we report the microstructure and mechanical properties of a newly developed die-cast Mg-RE(La,Ce,Nd,Gd)-Al alloy capable of working at higher elevated temperatures of 200-300℃.The new alloy delivers the yield strength of 94 MPa at 300℃,which demonstrates a 42%increase over the benchmark AE44 high temperature die-cast Mg alloy.The new alloy also has good stiffness at elevated temperatures with its modulus only decreasing linearly by 13%from room temperature up to 300℃.Thermal analysis shows a minor peak at 364.7℃in the specific heat curve of the new alloy,indicating a good phase stability of the alloy up to 300℃.Nd and Gd have more affinity to Al for the formation of the minority of divorced Al-RE(Nd,Gd)based compounds,and the stable Al-poor Mg_(12)RE(La_(0.22)Ce_(0.13)Nd_(0.31)Gd_(0.31))Zn_(0.39)Al_(0.13)compound acts as the continuous inter-dendritic network,which contribute to the high mechanical performance and stability of the new die-cast Mg alloy at 200-300℃.
基金the National Institute of Technology,Manipur,Imphal for Financial Support to carry out the experimental work of Mr.K.Ch.Apparao
文摘The present research work emphasized on identifying and optimizing various significant process parameters of high pressure die casting by using QFD-Taguchi based hybrid approach in order to yield the optimum casting density of the A380alloy.Identification of critical process parameters,selection of appropriate orthogonal array,analysis of means and analysis of variance are employed to study the performance characteristic of the die casting process.The most critical process parameters identified and optimized by QFD-Taguchi based hybrid approach,such as the injection pressure,the molten metal temperature,the plunger velocity(first and second stage)and the die temperature were explored in the experimental work.The results show that injection pressure is the most significant factor among the selected parameters.The contribution of the injection pressure to the variation of mean casting density is around61.483%.Confidence interval(CI)has also been estimated as0.000718for95%consistency level to validate the predicted range of optimum casting density of aforesaid alloy.
基金financially supported by the Fundamental Research Funds for the Central Universities(WUT:2017IVA036)111 Project(B17034)State Key Laboratory of Materials Processing and Die&Mould Technology,Huazhong University of Science and Technology(P2018-003)
文摘During the cold-chamber high pressure die casting(HPDC) process, samples were produced to investigate the microstructure characteristics of AM60B magnesium alloy. Special attention was paid to the effects of process parameters on the morphology and distribution of externally solidified crystals(ESCs) in the microstructure of magnesium alloy die castings, such as slow shot phase plunger velocity, delay time of pouring and fast shot phase plunger velocity. On the basis of metallographic observation and quantitative statistics, it is concluded that a lower slow shot phase plunger velocity and a longer delay time of pouring both lead to an increment of the size and percentage of the ESCs, due to the fact that a longer holding time of the melt in the shot sleeve will cause a more severe loss of the superheat. The impingement of the melt flow on the ESCs is more intensive with a higher fast shot phase plunger velocity, in such case the ESCs reveal a more granular and roundish morphology and are dispersed throughout the cross section of the castings. Based on analysis of the filling and solidification processes of the melt during the HPDC process, reasonable explanations were proposed in terms of the nucleation, growth, remelting and fragmentation of the ESCs to interpret the effects of process parameters on the morphology and distribution of the ESCs in the microstructure of magnesium alloy die castings.
基金financially supported by the National Natural Science Foundation of China-China Aerospace Science and Technology Corporation Aerospace Advanced Manufacturing Technology Research Foundation(NO.U1537202)the Special Funding Program on Transformation of Scientific and Technological Achievements at Jiangsu Province(No.BA2015041)
文摘Microstructural and hardness evolutions of a vacuum-assistant die-cast A380(Al-8.67 wt.%Si-3.27 wt.%Cu) alloy during heat treatment were investigated. Isothermal DSC test at 200 °C revealed that the precipitation reaction in the surface layer was faster than that in the central region. This corresponded with the hardness evolution that the surface layer hardened faster. The hardness increment in the surface layer was higher than that in the central region. Further experimental evidences indicated that the differences were due to the different amounts of heterogeneous nucleation sites for precipitation in the two parts. The influence of the characteristic as-cast microstructure on the artificial aging process is analyzed and discussed in detail.
文摘Flexibility of the CSIR-RCS, induction stirring with simultaneous air cooling process, in combination with high pressure die casting is successfully demonstrated by semi-solid rheocasting of plates performed on commercial 2024, 6082 and 7075 wrought aluminum alloys. Tensile properties were measured for the above mentioned rheocast wrought aluminum alloys in the T6 condition. The results showed that tensile properties were close to or even in some cases exceeded the minimum specifications. The yield strength and elongation of rheocast 2024-T6 exceeded the minimum requirements of the wrought alloy in the T6 condition but the ultimate tensile strength achieved only 90% of the specification because the Mg content of the starting alloy was below the commercial alloy specification. The strengths of rheocast 6082-T6 exceeded all of the wrought alloy T6 strength targets but the elongation only managed 36% of the required minimum due to porosity, caused by incipient melting during solution heat treatment, and the presence of fine intermetallie needles in the eutectic. The yield strength of rheocast 7075 exceeded the required one and the ultimate tensile strength also managed 97% of the specification; while the elongation only reached 46% of the minimum requirement also due to incipient melting porosity caused during the solution heat treatment process.
基金The work was financially supported by the Significant Fundamental Research Development & Planning of China (G2000067208-3) the Significant Project of the National Natural Science Foundation of China (59990470-3)and the internal research fund of Tsing
文摘The mold filling and solidification simulation for the high pressure die casting (HPDC) and low pressure die casting (LPDC) processes were studied. A mathematical model considering the turbulent flow and heat transfer phenomenon during the HPDC process has been established and parallel computation technique was used for the mold filling simulation of the process. The laminar flow characteristics of the LPDC process were studied and a simplified model for the mold filling process of wheel castings has been developed. For the solidification simulation under pressure conditions, the cyclic characteristics and the complicated boundary conditions were considered and techniques to improve the computational efficiency are discussed. A new criterion for predicting shrinkage porosity of Al alloy under low pressure condition has been developed in the solidification simulation process.