The layered van der Waals antiferromagnetic Fe PS_(3) has received considerable attention because long range magnetic ordering can remain with single atoms layer,which offers potential applications in future ultrathin...The layered van der Waals antiferromagnetic Fe PS_(3) has received considerable attention because long range magnetic ordering can remain with single atoms layer,which offers potential applications in future ultrathin devices.Here,we perform Raman spectroscopy to systematically explore the variations of lattice vibration and crystal structure under pressure up to 18.9 GPa.We observe two structural phase transitions at approximately 4 GPa and 13 GPa,respectively.Moreover,by monitoring spin-related Raman modes,we demonstrate a pressure-induced magnetic structure transition above 2 GPa.These modes disappear accompanying the second structural phase transition and insulator-to-metal transition(IMT),indicating the suppression of long-range magnetic ordering,in agreement with earlier neutron powder diffraction experiments.展开更多
A new structural phase of MgV2O6 was obtained by a high-pressure, high-temperature (HPHT) synthesis method. The new phase was investigated by the Rietveld analysis of X-ray powder diffraction data, showing space gro...A new structural phase of MgV2O6 was obtained by a high-pressure, high-temperature (HPHT) synthesis method. The new phase was investigated by the Rietveld analysis of X-ray powder diffraction data, showing space group Pbcn (No. 60) symmetry and a = 13.6113(6)A (1A =0.1 nm), b = 5.5809(1)A, c = 4.8566(3)A, V = 368.93(2)A3 (Z = 4). High pressure behavior was studied by Raman spectroscopy at room temperature. Under 22.5 GPa, there was no sign of a structural phase transition in the spectra, demonstrating stability of the HPHT phase up to the highest pressure.展开更多
High-pressure Raman spectroscopic experiments of anglesite, PbSO4, were carried out in a diamond anvil cell up to about 35 GPa at room temperature. Two stages of changes in the pattern of wavenumber-versus-pressure pl...High-pressure Raman spectroscopic experiments of anglesite, PbSO4, were carried out in a diamond anvil cell up to about 35 GPa at room temperature. Two stages of changes in the pattern of wavenumber-versus-pressure plot were observed in most of the vibrational modes. The first stage of change is the kink in the slope of wavenumber-versus-pressure plot at about 14 GPa, indicating a change in the force constant of modes. Further compression up to 21 GPa causes the splitting in the S-O stretching modes, representing the distortion of SO4 tetrahedron. The behavior of transition observed in PbSO4 is similar to that of BaSO4 as well as those found in the solid solution series of BaSO4-SrSO4. Transitions taking place at higher pressure for anglesite is due to the relatively greater value of electronegativity for Pb2+, as compared with M2+ in other complex compounds of similar structure.展开更多
Under high pressures of several giga-pascals using hydrothermal diamond anvil cell,methane generated directly from CaCO3 reduction in gold-lined chamber is in situ measured by Raman spectroscopy at the temperature of ...Under high pressures of several giga-pascals using hydrothermal diamond anvil cell,methane generated directly from CaCO3 reduction in gold-lined chamber is in situ measured by Raman spectroscopy at the temperature of 550℃ Fhe reducing agents include FeO,SiO and natural fayalite(Fe2SiO4),and the resource of hydrogen are water and natural serpentine(Mg3Si2O5(OH)4). The study demonstrates the existence of abiogenic formation of methane under high pressures in the Earth's interior and that the application of high pressure to catalyze multicomponent reactions is a very promising method.展开更多
The high-pressure structural,vibrational and electrical properties for realgar were investigated by in-situ Raman scattering and electrical conductivity experiments combined with first-principle calculations up to~30....The high-pressure structural,vibrational and electrical properties for realgar were investigated by in-situ Raman scattering and electrical conductivity experiments combined with first-principle calculations up to~30.8 GPa.It was verified that realgar underwent an isostructural phase transition at~6.3 GPa and a metallization at a higher pressure of~23.5 GPa.The isostructural phase transition was well evidenced by the obvious variations of Raman peaks,electrical conductivity,crystal parameters and the As–S bond length.The phase transition of metallization was in closely associated with the closure of bandgap rather than caused by the structural phase transition.And furthermore,the metallic realgar exhibited a relatively low compressibility with the unit cell volume V_(0)=718.1.4Å^(3)and bulk modulus B_(0)=36.1 GPa.展开更多
The recent discovery of room temperature superconductivity(283 K)in carbonaceous sulfur hydride(C-S-H)has attracted much interest in ternary hydrogen rich materials.In this report,ternary hydride P-S-H was synthesized...The recent discovery of room temperature superconductivity(283 K)in carbonaceous sulfur hydride(C-S-H)has attracted much interest in ternary hydrogen rich materials.In this report,ternary hydride P-S-H was synthesized through a photothermal-chemical reaction from elemental sulfur(S),phosphorus(P)and molecular hydrogen(H_(2))at high pressures and room temperature.Raman spectroscopy under pressure shows that H_(2)S and PH_(3) compounds are synthesized after laser heating at 0.9 GPa,and a ternary van der Waals compound P-S-H is synthesized with further compression to 4.6 GPa.The P-S-H compound is probably a mixed alloy of PH_(3) and(H_(2)S)_(2)H_(2) with a guest-host structure similar to the C-S-H system.The ternary hydride can persist up to 35.6 GPa at least and shows two phase transitions at approximately 23.6 GPa and 32.8 GPa,respectively.展开更多
The chemical reaction products of elemental sulfur(S),selenium(Se),and molecular hydrogen(H_(2))at high pressures and room temperature are probed by Raman spectroscopy.Two known compounds H_(2)S and H_(2)Se can be syn...The chemical reaction products of elemental sulfur(S),selenium(Se),and molecular hydrogen(H_(2))at high pressures and room temperature are probed by Raman spectroscopy.Two known compounds H_(2)S and H_(2)Se can be synthesized after laser heating at pressures lower than 1 GPa.Under further compression at room temperature,an H_(2)S-H_(2)Se and an H_(2)S-H_(2)Se-H_(2)van der Waals compounds are synthesized at 4 GPa and 6 GPa,respectively.The later is of guest-host structure and can be identified as(H_(2)S)x(H_(2)Se)(2-x)H_(2).It can be maintained up to 37 GPa at least,and the stability of its H_(2)Se molecules is extended:the H-Se stretching mode can be detected at least to 36 GPa but disappears at 22 GPa in(H_(2)Se)2H_(2).The pressure dependence of S-H and Se-H stretching modes of this ternary compound is in line with that of(H_(2)S)2 H_(2)and(H_(2)Se)2H_(2),respectively.However,its hydrogen subsystem only shows the relevance to(H_(2)S)2H_(2),indicating that this ternary compound can be viewed as H_(2)Se-replaced partial H_(2)S of(H_(2)S)2H_(2).展开更多
Germanium diselenide(GeSe_(2))is a promising candidate for electronic devices because of its unique crystal structure and optoelectronic properties.However,the evolution of lattice and electronic structure ofβ-GeSe_(...Germanium diselenide(GeSe_(2))is a promising candidate for electronic devices because of its unique crystal structure and optoelectronic properties.However,the evolution of lattice and electronic structure ofβ-GeSe_(2)at high pressure is still uncertain.Here we prepared high-qualityβ-GeSe_(2)single crystals by chemical vapor transfer(CVT)technique and performed systematic experimental studies on the evolution of lattice structure and bandgap ofβ-GeSe_(2)under pressure.High-precision high-pressure ultra low frequency(ULF)Raman scattering and synchrotron angle-dispersive x-ray diffraction(ADXRD)measurements support that no structural phase transition exists under high pressure up to 13.80 GPa,but the structure ofβ-GeSe_(2)turns into a disordered state near 6.91 GPa and gradually becomes amorphous forming an irreversibly amorphous crystal at 13.80 GPa.Two Raman modes keep softening abnormally upon pressure.The bandgap ofβ-GeSe_(2)reduced linearly from 2.59 eV to 1.65 eV under pressure with a detectable narrowing of 36.5%,and the sample under pressure performs the piezochromism phenomenon.The bandgap after decompression is smaller than that in the atmospheric pressure environment,which is caused by incomplete recrystallization.These results enrich the insight into the structural and optical properties ofβ-GeSe_(2)and demonstrate the potential of pressure in modulating the material properties of two-dimensional(2D)Ge-based binary material.展开更多
Ferromagnesite(Mg,Fe)CO_(3)with 20 mol%iron is a potential host mineral for carbon transport and storage in the Earth mantle.The high-pressure behavior of synthetic ferromagnesite(Mg_(0.81)Fe_(0.19))CO_(3)up to 53 GPa...Ferromagnesite(Mg,Fe)CO_(3)with 20 mol%iron is a potential host mineral for carbon transport and storage in the Earth mantle.The high-pressure behavior of synthetic ferromagnesite(Mg_(0.81)Fe_(0.19))CO_(3)up to 53 GPa was investigated by synchrotron X-ray diffraction(XRD)and Raman spectroscopy.The iron bearing carbonate underwent spin transition at around 44–46 GPa accompanied by a volume collapse of 1.8%,which also demonstrated a variation in the dνi/dP slope of the Raman modes.The pressure-volume data was fitted by a third-order Birch-Murnaghan equation of state(BM-EoS)for the high spin phase.The best-fit K_(0)=108(1)GPa and K_(0)'=4.2(1).Combining the dνi/dP and the K_(0),the mode Grüneisen parameters of each vibrational mode(T,L,ν4 andν1)were calculated.The effects of iron concentration on the Mg_(1−x)Fe_(x)CO_(3)system related to high-pressure compressibility and vibrational properties are discussed.These results expand the knowledge of the physical properties of carbonates and provide insights to the potential deep carbon host.展开更多
Both numerical and experimental studies of the stability and electronic properties of barium–sodium metaborate Ba_(2)Na_(3)(B_(3)O_(6))_(2)F(P63/m) at pressures up to 10 GPa have been carried out. Electronic-structur...Both numerical and experimental studies of the stability and electronic properties of barium–sodium metaborate Ba_(2)Na_(3)(B_(3)O_(6))_(2)F(P63/m) at pressures up to 10 GPa have been carried out. Electronic-structure calculations with HSE06 hybrid functional showed that Ba_(2)Na_(3)(B_(3)O_(6))_(2)F has an indirect band gap of 6.289 eV. A numerical study revealed the decomposition of Ba_(2)Na_(3)(B_(3)O_(6))_(2)F into the BaB_(2)O_(4),Na BO_(2), and NaF phases above 3.4 GPa at 300 K. Subsequent high-pressure high-temperature experiments performed using ‘Discoverer-1500’DIA-type apparatus at pressures of 3 and 6 GPa and temperature of 1173 K confirmed the stability of Ba_(2)Na_(3)(B_(3)O_(6))_(2)F at 3 GPa and its decomposition into BaB_(2)O_(4), NaBO_(2), and NaF at 6 GPa, which was verified by energy-dispersive X-ray analysis and Raman spectroscopy. The observed Raman bands of the Ba_(2)Na_(3)(B_(3)O_(6))_(2)F phase were assigned by comparing the experimental and calculated spectra. The experimental Raman spectra of decomposition reaction products obtained at 6 GPa suggest the origin of a new high-pressure modification of barium metaborate BaB_(2)O_(4).展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.52002372,12004387,51672279,51727806,11874361,and 11774354))Science Challenge Project(Grant No.TZ2016001)the CASHIPS Director’s Fund(Grant No.YZJJ201705)。
文摘The layered van der Waals antiferromagnetic Fe PS_(3) has received considerable attention because long range magnetic ordering can remain with single atoms layer,which offers potential applications in future ultrathin devices.Here,we perform Raman spectroscopy to systematically explore the variations of lattice vibration and crystal structure under pressure up to 18.9 GPa.We observe two structural phase transitions at approximately 4 GPa and 13 GPa,respectively.Moreover,by monitoring spin-related Raman modes,we demonstrate a pressure-induced magnetic structure transition above 2 GPa.These modes disappear accompanying the second structural phase transition and insulator-to-metal transition(IMT),indicating the suppression of long-range magnetic ordering,in agreement with earlier neutron powder diffraction experiments.
基金supported by the National Natural Science Foundation of China (Grant No. 51172091)the Program for New Century Excellent Talents in University
文摘A new structural phase of MgV2O6 was obtained by a high-pressure, high-temperature (HPHT) synthesis method. The new phase was investigated by the Rietveld analysis of X-ray powder diffraction data, showing space group Pbcn (No. 60) symmetry and a = 13.6113(6)A (1A =0.1 nm), b = 5.5809(1)A, c = 4.8566(3)A, V = 368.93(2)A3 (Z = 4). High pressure behavior was studied by Raman spectroscopy at room temperature. Under 22.5 GPa, there was no sign of a structural phase transition in the spectra, demonstrating stability of the HPHT phase up to the highest pressure.
文摘High-pressure Raman spectroscopic experiments of anglesite, PbSO4, were carried out in a diamond anvil cell up to about 35 GPa at room temperature. Two stages of changes in the pattern of wavenumber-versus-pressure plot were observed in most of the vibrational modes. The first stage of change is the kink in the slope of wavenumber-versus-pressure plot at about 14 GPa, indicating a change in the force constant of modes. Further compression up to 21 GPa causes the splitting in the S-O stretching modes, representing the distortion of SO4 tetrahedron. The behavior of transition observed in PbSO4 is similar to that of BaSO4 as well as those found in the solid solution series of BaSO4-SrSO4. Transitions taking place at higher pressure for anglesite is due to the relatively greater value of electronegativity for Pb2+, as compared with M2+ in other complex compounds of similar structure.
文摘Under high pressures of several giga-pascals using hydrothermal diamond anvil cell,methane generated directly from CaCO3 reduction in gold-lined chamber is in situ measured by Raman spectroscopy at the temperature of 550℃ Fhe reducing agents include FeO,SiO and natural fayalite(Fe2SiO4),and the resource of hydrogen are water and natural serpentine(Mg3Si2O5(OH)4). The study demonstrates the existence of abiogenic formation of methane under high pressures in the Earth's interior and that the application of high pressure to catalyze multicomponent reactions is a very promising method.
基金the strategic priority Research Program(B)of the Chinese Academy of Sciences(Grant No.18010401)Key Research Program of Frontier Sciences of CAS(Grant No.QYZDB-SSW-DQC009)+3 种基金Hundred Talents Program of CAS,NSF of China(Grant Nos.41774099 and 41772042)Youth Innovation Promotion Association of CAS(Grant No.2019390)Special Fund of the West Light Foundation of CASthe Supercomputer Center of Fujian Institute of Research on the Structure of Matter(FJIRSM)is acknowledged.
文摘The high-pressure structural,vibrational and electrical properties for realgar were investigated by in-situ Raman scattering and electrical conductivity experiments combined with first-principle calculations up to~30.8 GPa.It was verified that realgar underwent an isostructural phase transition at~6.3 GPa and a metallization at a higher pressure of~23.5 GPa.The isostructural phase transition was well evidenced by the obvious variations of Raman peaks,electrical conductivity,crystal parameters and the As–S bond length.The phase transition of metallization was in closely associated with the closure of bandgap rather than caused by the structural phase transition.And furthermore,the metallic realgar exhibited a relatively low compressibility with the unit cell volume V_(0)=718.1.4Å^(3)and bulk modulus B_(0)=36.1 GPa.
基金supported by the National Natural Science Foundation of China(Grant Nos.52002372,51672279,51727806,11874361,and 11774354)Science Challenge Project(Grant No.TZ2016001)Chinese Academy of Sciences Innovation Grant(Grant No.CXJJ-19-B08)。
文摘The recent discovery of room temperature superconductivity(283 K)in carbonaceous sulfur hydride(C-S-H)has attracted much interest in ternary hydrogen rich materials.In this report,ternary hydride P-S-H was synthesized through a photothermal-chemical reaction from elemental sulfur(S),phosphorus(P)and molecular hydrogen(H_(2))at high pressures and room temperature.Raman spectroscopy under pressure shows that H_(2)S and PH_(3) compounds are synthesized after laser heating at 0.9 GPa,and a ternary van der Waals compound P-S-H is synthesized with further compression to 4.6 GPa.The P-S-H compound is probably a mixed alloy of PH_(3) and(H_(2)S)_(2)H_(2) with a guest-host structure similar to the C-S-H system.The ternary hydride can persist up to 35.6 GPa at least and shows two phase transitions at approximately 23.6 GPa and 32.8 GPa,respectively.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.51672279,51727806,11874361,and 11774354)the Science Challenge Project,China(Grant No.TZ2016001)+1 种基金the CAS Innovation Fund(Grant No.CXJJ-19-B08)the CASHIPS Director’s Fund(Grant No.YZJJ201705)。
文摘The chemical reaction products of elemental sulfur(S),selenium(Se),and molecular hydrogen(H_(2))at high pressures and room temperature are probed by Raman spectroscopy.Two known compounds H_(2)S and H_(2)Se can be synthesized after laser heating at pressures lower than 1 GPa.Under further compression at room temperature,an H_(2)S-H_(2)Se and an H_(2)S-H_(2)Se-H_(2)van der Waals compounds are synthesized at 4 GPa and 6 GPa,respectively.The later is of guest-host structure and can be identified as(H_(2)S)x(H_(2)Se)(2-x)H_(2).It can be maintained up to 37 GPa at least,and the stability of its H_(2)Se molecules is extended:the H-Se stretching mode can be detected at least to 36 GPa but disappears at 22 GPa in(H_(2)Se)2H_(2).The pressure dependence of S-H and Se-H stretching modes of this ternary compound is in line with that of(H_(2)S)2 H_(2)and(H_(2)Se)2H_(2),respectively.However,its hydrogen subsystem only shows the relevance to(H_(2)S)2H_(2),indicating that this ternary compound can be viewed as H_(2)Se-replaced partial H_(2)S of(H_(2)S)2H_(2).
基金the National Natural Science Foundation of China(Grant Nos.12004339,11874328,11904322,61804047,22071221,and 21905252)China Postdoctoral Science Foundation(Grant Nos.2018M640679 and 2019T120629)the Zhongyuan Academician Foundation(Grant No.ZYQR201810163)。
文摘Germanium diselenide(GeSe_(2))is a promising candidate for electronic devices because of its unique crystal structure and optoelectronic properties.However,the evolution of lattice and electronic structure ofβ-GeSe_(2)at high pressure is still uncertain.Here we prepared high-qualityβ-GeSe_(2)single crystals by chemical vapor transfer(CVT)technique and performed systematic experimental studies on the evolution of lattice structure and bandgap ofβ-GeSe_(2)under pressure.High-precision high-pressure ultra low frequency(ULF)Raman scattering and synchrotron angle-dispersive x-ray diffraction(ADXRD)measurements support that no structural phase transition exists under high pressure up to 13.80 GPa,but the structure ofβ-GeSe_(2)turns into a disordered state near 6.91 GPa and gradually becomes amorphous forming an irreversibly amorphous crystal at 13.80 GPa.Two Raman modes keep softening abnormally upon pressure.The bandgap ofβ-GeSe_(2)reduced linearly from 2.59 eV to 1.65 eV under pressure with a detectable narrowing of 36.5%,and the sample under pressure performs the piezochromism phenomenon.The bandgap after decompression is smaller than that in the atmospheric pressure environment,which is caused by incomplete recrystallization.These results enrich the insight into the structural and optical properties ofβ-GeSe_(2)and demonstrate the potential of pressure in modulating the material properties of two-dimensional(2D)Ge-based binary material.
基金the support from the National Natural Science Foundation of China(NSFC)(Nos.41772034,42072047,NSFC-41972056,NSFC-41622202 to G.B.Zhangthe National Science Foundation for Young Scientists of China(No.41802044)to W.Liang+2 种基金supported by the National Science Foundation-Earth Sciences(No.EAR-1634415)Department of Energy-Geo Sciences(No.DE-FG0294ER14466)support in part by COMPRES under NSF Cooperative Agreement EAR-1661511.
文摘Ferromagnesite(Mg,Fe)CO_(3)with 20 mol%iron is a potential host mineral for carbon transport and storage in the Earth mantle.The high-pressure behavior of synthetic ferromagnesite(Mg_(0.81)Fe_(0.19))CO_(3)up to 53 GPa was investigated by synchrotron X-ray diffraction(XRD)and Raman spectroscopy.The iron bearing carbonate underwent spin transition at around 44–46 GPa accompanied by a volume collapse of 1.8%,which also demonstrated a variation in the dνi/dP slope of the Raman modes.The pressure-volume data was fitted by a third-order Birch-Murnaghan equation of state(BM-EoS)for the high spin phase.The best-fit K_(0)=108(1)GPa and K_(0)'=4.2(1).Combining the dνi/dP and the K_(0),the mode Grüneisen parameters of each vibrational mode(T,L,ν4 andν1)were calculated.The effects of iron concentration on the Mg_(1−x)Fe_(x)CO_(3)system related to high-pressure compressibility and vibrational properties are discussed.These results expand the knowledge of the physical properties of carbonates and provide insights to the potential deep carbon host.
基金financially supported by the Russian Science Foundation (No.21-19-00097)。
文摘Both numerical and experimental studies of the stability and electronic properties of barium–sodium metaborate Ba_(2)Na_(3)(B_(3)O_(6))_(2)F(P63/m) at pressures up to 10 GPa have been carried out. Electronic-structure calculations with HSE06 hybrid functional showed that Ba_(2)Na_(3)(B_(3)O_(6))_(2)F has an indirect band gap of 6.289 eV. A numerical study revealed the decomposition of Ba_(2)Na_(3)(B_(3)O_(6))_(2)F into the BaB_(2)O_(4),Na BO_(2), and NaF phases above 3.4 GPa at 300 K. Subsequent high-pressure high-temperature experiments performed using ‘Discoverer-1500’DIA-type apparatus at pressures of 3 and 6 GPa and temperature of 1173 K confirmed the stability of Ba_(2)Na_(3)(B_(3)O_(6))_(2)F at 3 GPa and its decomposition into BaB_(2)O_(4), NaBO_(2), and NaF at 6 GPa, which was verified by energy-dispersive X-ray analysis and Raman spectroscopy. The observed Raman bands of the Ba_(2)Na_(3)(B_(3)O_(6))_(2)F phase were assigned by comparing the experimental and calculated spectra. The experimental Raman spectra of decomposition reaction products obtained at 6 GPa suggest the origin of a new high-pressure modification of barium metaborate BaB_(2)O_(4).