期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effects of stator bending on pressure field and loss of transonic turbine stage 被引量:1
1
作者 王凯 周逊 王仲奇 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2009年第1期31-35,共5页
To study effects of the upstream flow field changing on the downstream flow field of transonic turbine, different three-dimensional bowed blades, which are the stator blades of transonic turbine stage, were designed i... To study effects of the upstream flow field changing on the downstream flow field of transonic turbine, different three-dimensional bowed blades, which are the stator blades of transonic turbine stage, were designed in this paper. And then numerical calculations were carried out. The effects on downstream flow field were studied and analyzed in detail. Results show that, at the middle of stator blades, although the increasing Maeh number causes the increase of shock-wave strength and friction, the middle flow field of downstream rotors is improved obviously. It is an important change in transonic condition. This causes the loss of the rotor' s middle part decreased greatly. Correspondingly, efficiency of the whole transonic stage can be increased. 展开更多
关键词 bowed blade high pressure turbine low aspect ratio transonic turbine
下载PDF
Reliability and sensitivity analyses of HPT blade-tip radial running clearance using multiply response surface model 被引量:5
2
作者 翟学 费成巍 +1 位作者 翟庆刚 王建军 《Journal of Central South University》 SCIE EI CAS 2014年第11期4368-4377,共10页
To reasonably design the blade-tip radial running clearance(BTRRC) of high pressure turbine and improve the performance and reliability of gas turbine, the multi-object multi-discipline reliability sensitivity analysi... To reasonably design the blade-tip radial running clearance(BTRRC) of high pressure turbine and improve the performance and reliability of gas turbine, the multi-object multi-discipline reliability sensitivity analysis of BTRRC was accomplished from a probabilistic prospective by considering nonlinear material attributes and dynamic loads. Firstly, multiply response surface model(MRSM) was proposed and the mathematical model of this method was established based on quadratic function. Secondly, the BTRRC was decomposed into three sub-components(turbine disk, blade and casing), and then the single response surface functions(SRSFs) of three structures were built in line with the basic idea of MRSM. Thirdly, the response surface function(MRSM) of BTRRC was reshaped by coordinating SRSFs. From the analysis, it is acquired to probabilistic distribution characteristics of input-output variables, failure probabilities of blade-tip clearance under different static blade-tip clearances δ and major factors impacting BTRRC. Considering the reliability and efficiency of gas turbine, δ=1.87 mm is an optimally acceptable option for rational BTRRC. Through the comparison of three analysis methods(Monte Carlo method, traditional response surface method and MRSM), the results show that MRSM has higher accuracy and higher efficiency in reliability sensitivity analysis of BTRRC. These strengths are likely to become more prominent with the increasing times of simulations. The present study offers an effective and promising approach for reliability sensitivity analysis and optimal design of complex dynamic assembly relationship. 展开更多
关键词 high pressure turbine blade-tip radial running clearance reliability sensitivity analysis multiply response surface method
下载PDF
In-service aircraft engines turbine blades life prediction based on multi-modal operation and maintenance data 被引量:3
3
作者 He Liu Jianzhong Sun +1 位作者 Shiying Lei Shungang Ning 《Propulsion and Power Research》 SCIE 2021年第4期360-373,共14页
The in-service life of turbine blades directly affects the on-wing lifetime and operating cost of aircraft engines.It would be essential to accurately evaluate the remaining useful life of turbine blades for safe engi... The in-service life of turbine blades directly affects the on-wing lifetime and operating cost of aircraft engines.It would be essential to accurately evaluate the remaining useful life of turbine blades for safe engine operation and reasonable maintenance decision-making.In this paper,a machine learning-based mechanism with multiple information fusion is proposed to predict the remaining useful life of high-pressure turbine blades.The developed method takes account of the in-service operating factors such as the high-pressure rotor speed and exhaust gas temperature,as well as the engine operating environments and performance degradation.The effectiveness of this method is demonstrated on simulated test cases generated by an integrated blade creep-life assessment model,which comprises engine performance,blade stress,thermal,and creep life estimation models.The results show that the proposed method provides a prospective result for in-service life evaluation of turbine blades and is of significance to evaluating the engine on-wing lifetime and making a reasonable maintenance plan. 展开更多
关键词 Multi-modal operating data fusion high pressure turbine blade Remaining useful life prediction Operating condition Creep life
原文传递
Analysis of swirling flow effects on the characteristics of unsteady hot-streak migration
4
作者 Wang Jingyu Ge Ning Sheng Chunhua 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2016年第6期1469-1476,共8页
The temperature of flow at the combustor exit is inherently non-uniform and the hot fluid is called hot-streak. An in-house CFD software, NUAA-Turbo, was used to carry out 3D unsteady simulations on the PW-Esingle-sta... The temperature of flow at the combustor exit is inherently non-uniform and the hot fluid is called hot-streak. An in-house CFD software, NUAA-Turbo, was used to carry out 3D unsteady simulations on the PW-Esingle-stage high-pressure turbine. The hot-streak effect based on real stator and combustor counts was approximately evaluated by the contraction/dilatation method on the interface. The unsteady attenuation and migration process of hot-streaks in the turbine passage were well captured. The general performance parameters for different circumferential positions of hot-streaks were relatively consistent. Then, the influences of hot-streaks on blade surface temperature were investigated by comparing results under hot-streak and uniform inflow conditions. Unsteady simulations with combined inlet hot-streak and swirling flow show that the core of a hot-streak migrates to the tip under the influence of a positive swirl, while the phenomenon is just opposite with a negative swirl. Therefore, the heat transfer environment of rotor blades shows great differences with different directions of inlet swirl. 展开更多
关键词 high pressure turbine Hot-streak Interface contraction/dilatation Swirling flow Unsteady flow
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部