期刊文献+
共找到1,103篇文章
< 1 2 56 >
每页显示 20 50 100
Timing effect of high temperature exposure on the plasticity of internode and plant architecture in maize
1
作者 Binbin Li Xianmin Chen +6 位作者 Tao Deng Xue Zhao Fang Li Bingchao Zhang Xin Wang Si Shen Shunli Zhou 《Journal of Integrative Agriculture》 SCIE CAS CSCD 2024年第2期551-565,共15页
The occurrence of high temperature(HT)in crop production is becoming more frequent and unpredictable with global warming,severely threatening food security.The state of an organ’s growth and development is largely de... The occurrence of high temperature(HT)in crop production is becoming more frequent and unpredictable with global warming,severely threatening food security.The state of an organ’s growth and development is largely determined by the temperature conditions it is exposed to over time.Maize is the main cereal crop,and its stem growth and plant architecture are closely related to lodging resistance,and especially sensitive to temperature.However,systematic research on the timing effect of HT on the sequentially developing internode and stem is currently lacking.To identify the timing effect of HT on the morphology and plasticity of the stem in maize,two hybrids(Zhengdan 958(ZD958),Xianyu 335(XY335))characterized by distinct morphological traits in the stem were exposed to a 7-day HT treatment from the V6 to V17 stages(Vn presents the vegetative stage with n leaves fully expanded)in 2019-2020.The results demonstrated that exposure to HT during V6-V12 accelerated the rapid elongation of stems.For instance,HT occurring at V7 and V12 specifically promoted the lengths and weights of the 3rd-5th and 9th-11th internodes,respectively.Meanwhile,HT slowed the growth of internodes adjacent to the promoted internodes.Interestingly,compared with control,the plant height was significantly increased soon after HT treatment,but the promotion effect became narrower at the subsequent flowering stage,demonstrating a self-adjusting mechanism in the maize plant in response to HT.Importantly,HT altered the plant architectures,including a rising of the ear position and increase in the ear position coefficient.XY335 exhibited greater sensitivity in stem development than ZD958 under HT treatment.These findings improve our systematic understanding of the plasticity of internode and plant architecture in response to the timing of HT exposure. 展开更多
关键词 MAIZE high temperature internode growth PLASTICITY plant architecture
下载PDF
Spatial pattern recognition for near-surface high temperature increases in mountain areas using MODIS and SRTM DEM
2
作者 WANG Yanxia YANG Lisha +1 位作者 HUANG Xiaoyuan ZHOU Ruliang 《Journal of Mountain Science》 SCIE CSCD 2024年第6期2025-2042,共18页
Abrupt near-surface temperature changes in mountainous areas are a special component of the mountain climate system.Fast and accurate measurements of the locations,intensity,and width of the near-surface changes are n... Abrupt near-surface temperature changes in mountainous areas are a special component of the mountain climate system.Fast and accurate measurements of the locations,intensity,and width of the near-surface changes are necessary but highly difficult due to the complicated environmental conditions and instrumental issues.This paper develops a spatial pattern recognition method to measure the near-surface high temperature increase(NSHTI),one of the lesser-attended changes.First,raster window measurement was proposed to calculate the temperature lapse rate using MODIS land surface temperature and SRTM DEM data.It fully considers the terrain heights of two neighboring cells on opposite or adjacent slopes with a moving window of 3×3 cell size.Second,a threshold selection was performed to identify the NSHTI cells using a threshold of-0.65℃/100 m.Then,the NSHTI strips were parameterized through raster vectorization and spatial analysis.Taking Yunnan,a mountainous province in southwestern China,as the study area,the results indicate that the NSHTI cells concentrate in a strip-like pattern along the mountains and valleys,and the strips are almost parallel to the altitude contours with a slight northward uplift.Also,they are located mostly at a 3/5 height of high mountains or within 400 m from the valley floors,where the controlling topographic index is the altitude of the terrain trend surface but not the absolute elevation and the topographic uplift height and cutting depth.Additionally,the NSHTI intensity varies with the geographic locations and the proportions increase with an exponential trend,and the horizontal width has a mean of about 1000 m and a maximum of over 5000 m.The result demonstrates that the proposed method can effectively recognize NSHTI boundaries over mountains,providing support for the modeling of weather and climate systems and the development of mountain resources. 展开更多
关键词 high temperature increase Mountain areas MODIS Spatial pattern recognition Raster window measurement Threshold selection
下载PDF
The bHLH transcription factor CsPIF4 positively regulates high temperature-induced hypocotyl elongation in cucumber
3
作者 Jing Nie Yu Jiang +4 位作者 Lijun Lv Yuzi Shi Peiyu Chen Qian Zhang Xiaolei Sui 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第5期1187-1197,共11页
High temperature-induced hypocotyl elongation is a typical thermomorphogenesis trait that may significantly affect early seedling growth and subsequent crop yield.The ambient temperature and endogenous auxin are two c... High temperature-induced hypocotyl elongation is a typical thermomorphogenesis trait that may significantly affect early seedling growth and subsequent crop yield.The ambient temperature and endogenous auxin are two critical factors that regulate hypocotyl growth.However,the mechanism of temperature and auxin integration in horticultural plants remains poorly understood.In this study,the roles of the basic helix-loop-helix transcription factor CsPIF4 in regulating auxin biosynthesis genes and the auxin content in the hypocotyl of cucumber(Cucumis sativus L.)seedlings under high temperature were investigated.qRT-PCR and in situ hybridization analysis revealed that expression of CsPIF4 was enhanced in the epidermis and vascular bundles in the hypocotyl of cucumber seedlings in response to high temperature.qRT-PCR and HPLC analysis showed that CsPIF4 positively regulated transcription of the auxin biosynthesis gene CsYUC8 and the auxin content in the hypocotyl under high temperature(35℃).The CRISPR/Cas9-mediated knockout of CsPIF4 resulted in a shorter hypocotyl compared with that of the wild type,together with decreased expression of CsYUC8 and lower auxin content in response to high temperature.Furthermore,biochemical assays showed that CsPIF4 could bind directly to the G-box motif of the CsYUC8 promoter and thereby activate CsYUC8 expression.These findings provide insight into the molecular mechanism of high temperature-mediated hypocotyl elongation in cucumber. 展开更多
关键词 CUCUMBER Hypocotyl elongation high temperature CsPIF4 AUXIN
下载PDF
Comprehensive analyses of the proteome and ubiquitome revealed mechanism of high temperature accelerating petal abscission in tree peony
4
作者 Chunying Liu Ziqi Liu +4 位作者 Yanchao Yuan Yuxi Zhang Yifu Fang Junqiang Chen Shupeng Gai 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第1期205-222,共18页
Tree peony(Paeonia suffruticosa Andrews)is a well-known ornamental plant with high economic value,but the short fluorescence is a key obstacle to its ornamental value and industry development.High temperature accelera... Tree peony(Paeonia suffruticosa Andrews)is a well-known ornamental plant with high economic value,but the short fluorescence is a key obstacle to its ornamental value and industry development.High temperature accelerates flower senescence and abscission,but the associated mechanisms are poorly understood.In this study,the tandem mass tag(TMT)proteome and label-free quantitative ubiquitome from tree peony cut flowers treated with 20℃for 0 h(RT0),20℃or 28℃for 60 h(RT60 or HT60)were examined based on morphological observation,respectively.Totally,6970 proteins and 1545 lysine ubiquitinated(Kub)sites in 844 proteins were identified.Hydrophilic residues(such as glutamate and aspartate)neighboring the Kub sites were in preference,and 36.01%of the Kub sites were located on the protein surface.The differentially expressed proteins(DEPs)and Kub-DEPs in HT60 vs RT60 were mainly enriched in ribosomal protein,protein biosynthesis,secondary metabolites biosynthesis,flavonoid metabolism,carbohydrate catabolism,and auxin biosynthesis and signaling revealed by GO and KEGG analysis,accompanying the increase of endogenous abscisic acid(ABA)accumulation and decrease of endogenous indoleacetic acid(IAA)level.Additionally,the expression patterns of six enzymes(SAMS,ACO,YUC,CHS,ANS and PFK)putatively with Kub modifications were analyzed by proteome and real-time quantitative RT-PCR.The cell-free degradation assays showed PsSAMS and PsACO proteins could be degraded via the 26 S proteasome system in tree peony flowers.Finally,a working model was proposed for the acceleration of flower senescence and abscission by high temperature.In summary,all results contributed to understanding the mechanism of flower senescence induced by high temperature and prolonging fluorescence in tree peony. 展开更多
关键词 Tree peony PROTEOME Ubiquitome high temperature Flower senescence
下载PDF
Resistance index and browning mechanism of apple peel under high temperature stress
5
作者 Hui Wang Shuhui Zhang +8 位作者 Zidun Wang Dongmei Li Leiyu Yan Yifeng Feng Xiaojie Liu Rongxin Chen Wenmin Fan Lulong Sun Zhengyang Zhao 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第2期305-317,共13页
Apples are one of the most important economic crops worldwide.Because of global warming and an aggravation of environmental,abnormally high temperatures occur frequently in fruit-growing season and seriously affect no... Apples are one of the most important economic crops worldwide.Because of global warming and an aggravation of environmental,abnormally high temperatures occur frequently in fruit-growing season and seriously affect normal fruit growth and reduce fruit quality and yield.We took five-year-old Ruixue’(Qinfu 1×Pink Lady;CNA20151469.1) fruits as test materials,and the ambient temperature during fruit development was monitored.The results showed that during the fruit-growing season,especially during the rapid growth stage (July to August),the maximum daily temperature exceeded 30℃ and lasted for more than 40 days.To determine the effects of high temperature stress on the apple fruit resistance,we treated expanding,veraison,and maturity-period fruits at different temperatures.It was found that the fruits of the expanding period showed strong resistance to high temperature stress,whereas during veraison and maturity,fruit resistance to high temperature stress decreased,and the fruit peel browning phenotype appeared.Meanwhile,the content of malonaldehyde (MDA),hydrogen peroxide (H_(2)O_(2)),and superoxide anion (O._(2)^(-)) in the peel gradually increased with increasing temperature.The content of total phenols,flavanol,and flavonoids in the peel decreased substantially at 45℃.Moreover,it was found that polyphenol oxidase gene (MdPPO1) was most sensitive to high temperature stress in apple.Furthermore,transient and stable MdPPO1 overexpression significantly promoted peel browning.The transgenic materials were more sensitive to high temperatures,and browning was more severe compared to non-genetically modified organism (WT).Stable MdPPO1 knockout calli obtained via clustered regularly interspersed short palindromic repeats (CRISPR/Cas9) gene knockout technology reduced the browning phenotype,and the resultant fruits were not sensitive to the effects of high temperature stress.Thus,MdPPO1 expression may be a key factor of high temperature-related changes observed in the browning phenotype that provides a scientific theoretical basis for the selection of high temperature-resistant varieties and apple cultivation and management in the future. 展开更多
关键词 Malus domestica Borkh high temperature stress PEEL BROWNING MdPPO1
下载PDF
Improving corrosion resistance of additively manufactured WE43 magnesium alloy by high temperature oxidation for biodegradable applications
6
作者 Jinge Liu Bangzhao Yin +7 位作者 Fei Song Bingchuan Liu Bo Peng Peng Wen Yun Tian Yufeng Zheng Xiaolin Ma Caimei Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2024年第3期940-953,共14页
Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples... Laser powder bed fusion(L-PBF)has been employed to additively manufacture WE43 magnesium(Mg)alloy biodegradable implants,but WE43 L-PBF samples exhibit excessively rapid corrosion.In this work,dense WE43 L-PBF samples were built with the relativity density reaching 99.9%.High temperature oxidation was performed on the L-PBF samples in circulating air via various heating temperatures and holding durations.The oxidation and diffusion at the elevated temperature generated a gradient structure composed of an oxide layer at the surface,a transition layer in the middle and the matrix.The oxide layer consisted of rare earth(RE)oxides,and became dense and thick with increasing the holding duration.The matrix was composed ofα-Mg,RE oxides and Mg_(24)RE_(5) precipitates.The precipitates almost disappeared in the transition layer.Enhanced passivation effect was observed in the samples treated by a suitable high temperature oxidation.The original L-PBF samples lost 40%weight after 3-day immersion in Hank’s solution,and broke into fragments after 7-day immersion.The casted and solution treated samples lost roughly half of the weight after 28-day immersion.The high temperature oxidation samples,which were heated at 525℃ for 8 h,kept the structural integrity,and lost only 6.88%weight after 28-day immersion.The substantially improved corrosion resistance was contributed to the gradient structure at the surface.On one hand,the outmost dense layer of RE oxides isolated the corrosive medium;on the other hand,the transition layer considerably inhibited the corrosion owing to the lack of precipitates.Overall,high temperature oxidation provides an efficient,economic and safe approach to inhibit the corrosion of WE43 L-PBF samples,and has promising prospects for future clinical applications. 展开更多
关键词 Laser powder bed fusion Biodegradable magnesium alloy high temperature oxidation Corrosion resistance WE43.
下载PDF
High temperature treatment induced production of unreduced 2n pollen in Camellia oleifera
7
作者 Hongda Deng Xiaoyu Zhang +5 位作者 Song Sheng Yuxun Huang Ziqi Ye Tongyue Zhang Xing Liu Zhiqiang Han 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第3期879-896,共18页
Unreduced gametes through chromosome doubling play a major role in the process of plant polyploidization.Our previous work confirmed that Camellia oleifera can produce natural 2n pollen,and it is possible to induce th... Unreduced gametes through chromosome doubling play a major role in the process of plant polyploidization.Our previous work confirmed that Camellia oleifera can produce natural 2n pollen,and it is possible to induce the 2n pollen formation by high temperature treatment.This study focused on the optimization of the 2n pollen induction technique and the mechanisms of high temperature-induced2n pollen formation in C.oleifera.We found that the optimal protocol for inducing 2n pollen via high temperature was to perform 45℃with4 h at the prophaseⅠstage of the pollen mother cells(PMCs).Meanwhile,high temperature significantly decreased the yield and fertility of2n pollen.Through the observation of meiosis,abnormal chromosome and cytological behaviour was discovered under high-temperature treatment,and we confirmed that the formation of 2n pollen is caused by abnormal cell plate.Based on weighted gene co-expression network analysis,fifteen hub genes related to cell cycle control were identified.After male flower buds were exposed to heat shock,polygalacturonase gene(CoPGX3)was significantly upregulated.We inferred that high temperature causes the CoPGX3 gene to be overexpressed and that CoPGX3 is redistributed into the cytosol where it degrades cytoplasmic pectin,which leads to an abnormal cell plate.Furthermore,abnormal cytokinesis resulted in the formation of dyads and triads,and PMCs divided to produce 2n pollen.Our findings provide new insights into the mechanism of 2n pollen induced by high temperature in a woody plant and lay a foundation for further ploidy breeding of C.oleifera. 展开更多
关键词 Camellia oleifera Pollen mother cells(PMCs) high temperature MEIOSIS 2n pollen CoPGX3
下载PDF
Transcriptome and metabolome analysis of preharvest internal browning in Nane plum fruit caused by high temperature
8
作者 Cheng Peng Linping Deng +7 位作者 Hejun Tan Wancong Meng Jianliang Luo Zengwen Zhang Huiqiong Chen Jishui Qiu Xiaoxiao Chang Yusheng Lu 《Horticultural Plant Journal》 SCIE CAS CSCD 2024年第5期1099-1111,共13页
The preharvest internal browning of Nane plum fruit,with no visible effects on the appearance of the fruit,has become a serious problem in recent years in its production area in Guangdong Province,China.This study inv... The preharvest internal browning of Nane plum fruit,with no visible effects on the appearance of the fruit,has become a serious problem in recent years in its production area in Guangdong Province,China.This study investigated the effects of environmental factors,including temperature,on Nane plum internal browning.Plum orchards at different elevations with different incidences of internal browning were selected.Using fruits with different internal browning incidence levels,the internal browning mechanism was analyzed with transcriptome and metabolome analyses.The results revealed decreased internal browning at high altitudes.Shading treatment significantly reduced internal browning,whereas bagging and insect-proof net-covering treatments significantly increased internal browning.Because bagging and net coverings increase the local ambient temperature,the findings suggest that high temperature is an important factor influencing the internal browning of Nane plum.The metabolome experiments showed that with increased internal browning,the levels of phenolic hydroxyls such as catechol increased,with simultaneous increases in hydrogen peroxide content and oxidase activity.It can be speculated that the oxidation of phenolic hydroxyl substances is the main cause of the preharvest browning of Nane plum.Transcriptome analysis revealed the increased expression of calcium signaling-related and downstream effector genes and indicated an important role of calcium in internal browning,possibly due to its increased content in the fruit.Further,with increasingly serious internal browning,genes related to photosynthesis were down-regulated,while genes related to senescence were up-regulated,thus suggesting the up-regulation of the process of cell senescence during internal browning.In conclusion,heat stress should be eliminated to reduce preharvest internal browning in Nane plum. 展开更多
关键词 Nane plum Fruit internal browning high temperature CALCIUM
下载PDF
Intermolecular Acid-Base-Pairs Containing Poly(p-Terphenyl-co-lsatin Piperidinium)for High Temperature Proton Exchange Membrane Fuel Cells
9
作者 Xiaofeng Hao Zhen Li +6 位作者 Min Xiao Zhiheng Huang Dongmei Han Sheng Huang Wei Liu Shuanjin Wang Yuezhong Meng 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期406-414,共9页
How to optimize and regulate the distribution of phosphoric acid in matrix,and pursuing the improved electrochemical performance and service lifetime of high temperature proton exchange membrane(HT-PEMs)fuel cell are ... How to optimize and regulate the distribution of phosphoric acid in matrix,and pursuing the improved electrochemical performance and service lifetime of high temperature proton exchange membrane(HT-PEMs)fuel cell are significant challenges.Herein,bifunctional poly(p-terphenyl-co-isatin piperidinium)copolymer with tethered phosphonic acid(t-PA)and intrinsic tertiary amine base groups are firstly prepared and investigated as HT-PEMs.The distinctive architecture of the copolymer provides a well-designed platform for rapid proton transport.Protons not only transports through the hydrogen bond network formed by the adsorbed free phosphoric acid(f-PA)anchored by the tertiary amine base groups,but also rely upon the proton channel constructed by the ionic cluster formed by the t-PA aggregation.Thorough the design of the structure,the bifunctional copolymers with lower PA uptake level(<100%)display prominent proton conductivities and peak power densities(99 mS cm^(-1),812 mW cm^(-2)at 160℃),along with lower PA leaching and higher voltage stability,which is a top leading result in disclosed literature.The results demonstrate that the design of intermolecular acid-base-pairs can improve the proton conductivity without sacrificing the intrinsic chemical stability or mechanical property of the thin membrane,realizing win-win demands between the mechanical robustness and electrochemical properties of HT-PEMs. 展开更多
关键词 bifunctional copolymer high temperature proton exchange membrane intermolecular acid-base-pairs phosphonic acid retention phosphonic acid uptake level
下载PDF
Short communication:Extreme glacier mass loss triggered by high temperature and drought during hydrological year 2022/2023 in Qilian Mountains
10
作者 JiZu Chen XingYu Xue WenTao Du 《Research in Cold and Arid Regions》 CSCD 2024年第1期1-4,共4页
In the hydrological year 2022/2023,the glaciers in the Qilian Mountains experienced unprecedented mass loss.The glacier-wide mass balance was-1,188 mm w.e.,in contrast to-350 mm of average mass balance since 1990 over... In the hydrological year 2022/2023,the glaciers in the Qilian Mountains experienced unprecedented mass loss.The glacier-wide mass balance was-1,188 mm w.e.,in contrast to-350 mm of average mass balance since 1990 over the Bailanghe Glacier No.12 in the middle of Qilian Mountains.The temperature during 2022–2023 reached the highest value ever recorded,second only to 2022,while at the same time the precipitation amount was less compared to other year since 2000,which together led to the strongest glacier mass loss during 2022–2023.The atmospheric circulation analysis shows that the high temperature in the Qilian Mountains in 2023 was jointly caused by the Arctic air mass and East Asian monsoon. 展开更多
关键词 Bailanghe Glacier No.21 Glacier mass loss Extreme high temperature Atmospheric circulation
下载PDF
Spatial Optimization Strategies for High Temperature Heat Exposure Based on Thermally Vulnerable Populations and Case Studies
11
作者 XIA Xiaoya YANG Xin ZHANG Qi 《Journal of Landscape Research》 2024年第2期1-5,14,共6页
The objective of this study is to investigate the factors that contribute to brittleness and to identify strategies for mitigating these factors in populations with varying degrees of thermal vulnerability,based on th... The objective of this study is to investigate the factors that contribute to brittleness and to identify strategies for mitigating these factors in populations with varying degrees of thermal vulnerability,based on the potential impact of extreme heat exposure on human survival and habitability.The physiological condition of lower adaptability to high temperature environments and the assessment of individuals who may have higher tolerance time in high temperature environments based on spatial perspectives suggest the need for targeted spatial optimization strategies for commuters and disadvantaged populations.This is demonstrated through a case study.These optimization measures encompass a variety of aspects,including the integration of transportation systems,the expansion of grey space corridors,the improvement of green space layout,and the implantation of green infrastructure.The study aims to reduce the exposure time of thermally vulnerable individuals to high temperature environments through spatial optimization strategies,to enhance the resilience of urban green spaces to heat stress,and to reduce the probability of heat-wave occurrence. 展开更多
关键词 Thermal vulnerability EXPOSURE high temperature environment Spatial optimization
下载PDF
High Temperature Rheological Performance of Graphene Modified Rubber Asphalt
12
作者 Heyuan GUO Chunhua LI +3 位作者 Xin ZHAO Yinghua YUAN Shaoqi TANG Yongjun MENG 《Research and Application of Materials Science》 2024年第1期9-15,共7页
To elucidate the high temperature rheological capability of graphene modified rubber asphalt,three contents of graphene and crumb rubber were prepared by a combination of mechanical agitation and high speed shearing m... To elucidate the high temperature rheological capability of graphene modified rubber asphalt,three contents of graphene and crumb rubber were prepared by a combination of mechanical agitation and high speed shearing machine,then used dynamic shear rheological test(DSR)and multiple stress creep recovery(MSCR)tests to evaluate.The hardness and softening point with rotational viscosity of samples raised with the addition of graphene,especially the addition of 0.04%.Dynamic shear rheological test revealedthat the dynamic shear modulus G*,rutting factor G*/Sin δ,and zero shear viscosity(ZSV)of graphene-modified rubber asphalt were greatly influenced along with graphene-increased,on the contrary,phase angle δ which characterize the viscoelastic ratio of asphalt decreased.Multiple stress creep recovery(MSCR)tests showed that the graphene-enhanced rubber asphalt had high-temperature stability through non-recoverable creep compliance(Jnr).Based on these findings,graphene-modified rubber asphalt binders with the addition of 0.04% graphene had good viscoelastic properties as well as high temperature rutting resistance performance.In the meantime,G*/Sin δ,ZSV,and Jnr100,Jnr3200 have good correlation,which can reveal the excellent high-temperature stability performance of asphalt. 展开更多
关键词 GRAPHENE high temperature rheological properties MSCR Zero shear viscosity RUTTING
下载PDF
Global Burden of Cardiovascular Disease Attributable to High Temperature in 204 Countries and Territories from 1990 to 2019 被引量:3
13
作者 HONG Le YAN Miao Miao +4 位作者 ZHANG Yun Quan WANG Kai WANG Ya Qi LUO Si Qi WANG Fang 《Biomedical and Environmental Sciences》 SCIE CAS CSCD 2023年第3期222-230,共9页
Objective This study aimed to estimate spatiotemporal variations of global heat-related cardiovascular disease(CVD)burden from 1990 to 2019.Methods Data on the burden of heat-related CVD were derived from the Global B... Objective This study aimed to estimate spatiotemporal variations of global heat-related cardiovascular disease(CVD)burden from 1990 to 2019.Methods Data on the burden of heat-related CVD were derived from the Global Burden of Disease Study 2019.Deaths and disability-adjusted life years(DALYs)were used to quantify heat-induced CVD burden.We calculated the age-standardized mortality rate(ASMR)and DALY rate(ASDR)per 100,000population to compare this burden across regions.Generalized linear models were applied to evaluate estimated annual percentage changes(EAPC)for temporal trends from 1990 to 2019.The correlation between the socio-demographic index(SDI)and age-standardized rate was measured using the Spearman rank test.Results Heat-induced CVD caused approximately 90 thousand deaths worldwide in 2019.Global ASMR and ASDR of heat-related CVD in 2019 were 1.17[95%confidence interval(CI):0.13-1.98]and 25.59(95%CI:2.07-44.17)per 100,000 population,respectively.The burden was significantly increased in middle and low-SDI regions and slightly decreased in high-SDI regions from 1990 to 2019.ASMR showed an upward trend,with the most considerable increase in low-latitude countries.We observed a negative correlation between SDI and EAPC in ASMR(rs=-0.57,P<0.01)and ASDR(rs=-0.59,P<0.01)among204 countries.Conclusion Heat-attributable CVD burden substantially increased in most developing countries and tropical regions. 展开更多
关键词 high temperature Cardiovascular disease Global disease burden Climate change
下载PDF
Translocation and Distribution of Carbon-Nitrogen in Relation to Rice Yield and Grain Quality as Affected by High Temperature at Early Panicle Initiation Stage 被引量:2
14
作者 JI Dongling XIAO Wenhui +8 位作者 SUN Zhiwei LIU Lijun GU Junfei ZHANG Hao Matthew Tom HARRISON LIU Ke WANG Zhiqin WANG Weilu YANG Jianchang 《Rice science》 SCIE CSCD 2023年第6期598-612,共15页
Due to climate change, extreme heat stress events have become more frequent, adversely affecting rice yield and grain quality. The accumulation and translocation of dry matter and nitrogen substances are essential for... Due to climate change, extreme heat stress events have become more frequent, adversely affecting rice yield and grain quality. The accumulation and translocation of dry matter and nitrogen substances are essential for rice yield and grain quality. To assess the impact of high temperature stress(HTS) at the early panicle initiation(EPI) stage on the accumulation, transportation, and distribution of dry matter and nitrogen substances in various organs of rice, as well as the resulting effects on rice yield and grain quality, pot experiments were conducted using an indica rice cultivar Yangdao 6(YD6) and a japonica rice cultivar Jinxiangyu 1(JXY1) under both normal temperature(32 ℃/26 ℃) and high temperature(38 ℃/29 ℃) conditions. The results indicated that exposure to HTS at the EPI stage significantly decreased rice yield by reducing spikelet number per panicle, grain-filling rate, and grain weight. However, it improved the nutritional quality of rice grains by increasing protein and amylose contents. The reduction in nitrogen and dry matter accumulation accounted for the changes in spikelet number per panicle, grain-filling rate, and grain size. Under HTS, the decrease in nitrogen accumulation accompanied by the reduction in dry matter may be due to the down-regulation of leaf net photosynthesis and senescence, as evidenced by the decrease in nitrogen content. Furthermore, the decrease in sink size limited the translocation of dry matter and nitrogen substances to grains, which was closely related to the reduction in grain weight and the deterioration of grain quality. These findings significantly contribute to our understanding of the mechanisms of HTS on grain yield and quality formation from the perspective of dry matter and nitrogen accumulation and translocation. Further efforts are needed to improve the adaptability of rice varieties to climate change in the near future. 展开更多
关键词 rice early panicle initiation stage high temperature stress carbon-nitrogen translocation grain yield grain quality
下载PDF
Various admixtures to mitigate the long-term strength retrogression of Portland cement cured under high pressure and high temperature conditions 被引量:2
15
作者 Jiankun Qin Xueyu Pang +2 位作者 Ashok Santra Guodong Cheng Hailong Li 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2023年第1期191-203,共13页
In order to investigate the problem of long-term strength retrogression in oil well cement systems exposed to high pressure and high temperature(HPHT)curing conditions,various influencing factors,including cement sour... In order to investigate the problem of long-term strength retrogression in oil well cement systems exposed to high pressure and high temperature(HPHT)curing conditions,various influencing factors,including cement sources,particle sizes of silica flour,and additions of silica fume,alumina,colloidal iron oxide and nano-graphene,were investigated.To simulate the environment of cementing geothermal wells and deep wells,cement slurries were directly cured at 50 MPa and 200?C.Mineral compositions(as determined by X-ray diffraction Rietveld refinement),water permeability,compressive strength and Young’s modulus were used to evaluate the qualities of the set cement.Short-term curing(2e30 d)test results indicated that the adoption of 6 m m ultrafine crystalline silica played the most important role in stabilizing the mechanical properties of oil well cement systems,while the addition of silica fume had a detrimental effect on strength stability.Long-term curing(2e180 d)test results indicated that nano-graphene could stabilize the Young’s modulus of oil well cement systems.However,none of the ad-mixtures studied here can completely prevent the strength retrogression phenomenon due to their inability to stop the conversion of amorphous to crystalline phases. 展开更多
关键词 high pressure and high temperature(HPHT) Strength retrogression Young’s modulus Water permeability Rietveld method
下载PDF
Genetic variability predicting breeding potential of upland cotton(Gossypium hirsutum L.)for high temperature tolerance 被引量:2
16
作者 FAROOQ Amjad SHAKEEL Amir +5 位作者 SAEED Asif FAROOQ Jehanzeb RIZWAN Muhammad CHATTHA Waqas Shafqat SARWAR Ghulam RAMZAN Yasir 《Journal of Cotton Research》 CAS 2023年第2期81-97,共17页
Background High temperature stress at peak flowering stage of cotton is a major hindrance for crop potential.This study aimed to increase genetic divergence regarding heat tolerance in newly developed cultivars and hy... Background High temperature stress at peak flowering stage of cotton is a major hindrance for crop potential.This study aimed to increase genetic divergence regarding heat tolerance in newly developed cultivars and hybrids.Fifty cotton genotypes and 40 F1(hybrids)were tested under field conditions following the treatments,viz.,high temperature stress and control at peak flowering stage in August and October under April and June sowing,respectively.Results The mean squares revealed significant differences among genotypes,treatments,genotype×treatment for relative cell injury,chlorophyll contents,canopy temperature,boll retention and seed cotton yield per plant.The genetic diversity among 50 genotypes was analyzed through cluster analysis and heat susceptibility index(HSI).The heat tolerant genotypes including FH-Noor,NIAB-545,FH-466,FH-Lalazar,FH-458,NIAB-878,IR-NIBGE-8,Weal-AGShahkar,and heat sensitive,i.e.,CIM-602,Silky-3,FH-326,SLH-12 and FH-442 were hybridized in line×tester fashion to produce F1 populations.The breeding materials’populations(40 F1)revealed higher specific combining ability variances along with dominance variances,decided the non-additive type gene action for all the traits.The best general combining ability effects for most of the traits were displayed by the lines,i.e.,FH-Lalazar,NIAB-878 along with testers FH-326 and Silky-3.Specific combining ability effects and better-parent heterosis were showed by the crosses,viz.,FH-Lalazar×Silky-3,FH-Lalazar×FH-326,NIAB-878×Silky-3,and NIAB-878×FH-326 for seed cotton yield and yield contributing traits under high temperature stress.Conclusion Heterosis breeding should be carried out in the presence of non-additive type gene action for all the studied traits.The best combiner parents with better-parent heterosis may be used in crossing program to develop high yielding cultivars,and hybrids for high temperature stress tolerance. 展开更多
关键词 high temperature Upland cotton Peak flowering HETEROSIS Gene action Combining ability
下载PDF
Mechanical properties and damage constitutive model of sandstone after acid corrosion and high temperature treatments 被引量:1
17
作者 Qijian Chen Youliang Chen +3 位作者 Peng Xiao Xi Du Yungui Pan Rafig Azzam 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2023年第6期747-760,共14页
Aiming at the problem of temperature-mechanics-chemical(T-M-C)action encountered by rocks in underground engineering,sandstone was selected as the sample for acid corrosion treatment at pH 1,3,5 and 7,the acid corrosi... Aiming at the problem of temperature-mechanics-chemical(T-M-C)action encountered by rocks in underground engineering,sandstone was selected as the sample for acid corrosion treatment at pH 1,3,5 and 7,the acid corrosion treated samples were then subjected to high-temperature experiments at 25,300,600,and 900℃,and triaxial compression experiments were conducted in the laboratory.The experimental results show that the superposition of chemical damage and thermal damage has a significant impact on the quality,wave velocity,porosity and compression failure characteristics of the rock.Based on the Lemaitre strain equivalent hypothesis theory,the damage degree of rock material was described by introducing damage variables,and the spatial mobilized plane(SMP)criterion was adopted.The damage constitutive model can well reflect the stress-strain characteristics of the rock triaxial compression process,which verified the rationality and reliability of the model parameters.The experiment and constitutive model analyzed the change law of mechanical properties of rock after chemical corrosion and high temperature thermal damage,which had certain practical significance for rock engineering construction. 展开更多
关键词 Acid corrosion high temperature Mechanical properties Damage variable SMP criterion Constitutive model
下载PDF
Brassinosteroids Mediate Endogenous Phytohormone Metabolism to Alleviate High Temperature Injury at Panicle Initiation Stage in Rice 被引量:1
18
作者 CHEN Yanhua WANG Yaliang +5 位作者 CHEN Huizhe XIANG Jing ZHANG Yikai WANG Zhigang ZHU Defeng ZHANG Yuping 《Rice science》 SCIE CSCD 2023年第1期70-86,共17页
High temperatures cause physiological and biochemical changes and significantly affect young panicle development of rice(Oryza sativa L.).Brassinosteroids play important roles in enhancing crop stress resistance.In th... High temperatures cause physiological and biochemical changes and significantly affect young panicle development of rice(Oryza sativa L.).Brassinosteroids play important roles in enhancing crop stress resistance.In this study,we subjected rice cultivars Huanghuazhan(heat-resistant)and IR36(heat-sensitive)to high temperature(HT,40 oC)or normal temperature(NT,33 oC)for 7 d at the panicle initiation stage,in conjunction with application of 24-epibrassinolide[EBR,a synthetic brassinolide(BR)]or brassinazole(BRZ,a BR biosynthesis inhibitor)at the beginning of the treatments.HT exacerbated spikelet degeneration and inhibited young panicle growth,which were partially prevented by EBR application,while BRZ application aggravated the reduction in spikelet number.HT decreased the contents of BR,active cytokinins(aCTK),active gibberellins(aGA)and indole-3-acetic acid(IAA),but increased the content of abscisic acid(ABA)in young panicles.The activities of key enzymes involved in sucrose hydrolysis,glycolysis and the tricarboxylic acid cycle in young panicles were decreased with the change of endogenous hormone levels under HT.In addition,the contents of H2O2 and malondialdehyde(MDA)were increased and the activities of antioxidant enzymes were decreased in young panicles.Exogenous application of EBR induced the expression of phytohormone biosynthesis-related genes and down-regulated the expression of phytohormone catabolism-related genes to increase the contents of endogenous BR,aCTK,aGA and ABA,thus promoting the decomposition and utilization of sucrose in young panicles,enhancing the activities of superoxide dismutase,catalase and peroxidase,and reducing the accumulation of H2O2 and MDA in young panicles,whereas application of BRZ had the opposite physiological effects.These results showed that brassinosteroids mediate endogenous phytohormone metabolism to alleviate HT injury at the panicle initiation stage in rice. 展开更多
关键词 RICE high temperature panicle initiation stage phytohormone metabolism physiological and biochemical indices
下载PDF
Transient multi-physics behavior of an insert high temperature superconducting no-insulation coil in hybrid superconducting magnets with inductive coupling 被引量:1
19
作者 Xiang KANG Yujin TONG +1 位作者 Wei WU Xingzhe WANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2023年第2期255-272,共18页
A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet dur... A transient multi-physics model incorporated with an electromagneto-thermomechanical coupling is developed to capture the multi-field behavior of a single-pancake(SP)insert no-insulation(NI)coil in a hybrid magnet during the charging and discharging processes.The coupled problem is resolved by means of the finite element method(FEM)for the magneto-thermo-elastic behaviors and the Runge-Kutta method for the transient responses of the electrical circuits of the hybrid superconducting magnet system.The results reveal that the transient multi-physics responses of the insert NI coil primarily depend on the charging/discharging procedure of the hybrid magnet.Moreover,a reverse azimuthal current and a compressive hoop stress are induced in the insert NI coil during the charging process,while a forward azimuthal current and a tensile hoop stress are observed during the discharging process.The induced voltages in the insert NI coil can drive the currents flowing across the radial turns where the contact resistance exists.Therefore,it brings forth significant Joule heat,causing a temperature rise and a uniform distribution of this heat in the coil turns.Accordingly,a thermally/mechanically unstable or quenching event may be encountered when a high operating current is flowing in the insert NI coil.It is numerically predicted that a quick charging will induce a compressive hoop stress which may bring a risk of buckling instability in the coil,while a discharging will not.The simulations provide an insight of hybrid superconducting magnets under transient start-up or shutdown phases which are inevitably encountered in practical applications. 展开更多
关键词 hybrid superconducting magnet high temperature superconducting(HTS)no-insulation(NI)coil inductive coupling multi-physics field thermal stability
下载PDF
Effects of Al and Co doping on the structural stability and high temperature cycling performance of LiNi_(0.5)Mn_(1.5)O_(4) spinel cathode materials 被引量:1
20
作者 Jianfeng Cheng Meixuan Li +4 位作者 Yutong Wang Jiexiang Li Jiawei Wen Chunxia Wang Guoyong Huang 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2023年第9期201-209,共9页
The poor structural stability and capacity retention of the high-voltage spinel-type LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)limits their further application.Herein,Al and Co were doped in LNMO materials for a more stable struct... The poor structural stability and capacity retention of the high-voltage spinel-type LiNi_(0.5)Mn_(1.5)O_(4)(LNMO)limits their further application.Herein,Al and Co were doped in LNMO materials for a more stable structure and capacity.The LNMO,LiNi_(0.45)Al_(0.05)Mn_(1.5)O_(4)(LNAMO)and LiNi_(0.45)Co_(0.05)Mn_(1.5)O_(4)(LNCMO)were synthesized by calcination at 900℃ for 8 h,which was called as solid-phase method and applied universally in industry.XRD,FT-IR and CV test results showed the synthesized samples have cation disordering Fd-3m space group structures.Moreover,the incorporation of Al and Co increased the cation disordering of LNMO,thereby increasing the transfer rate of Li+.The SEM results showed that the doped samples performed more regular and ortho-octahedral.The EDS elemental analysis confirmed the uniform distribution of each metal element in the samples.Moreover,the doped samples showed better electrochemical properties than undoped LNMO.The LNAMO and LNCMO samples were discharged with specific capacities of 116.3 mA·h·g^(-1)and 122.8 mA·h·g^(-1)at 1 C charge/discharge rate with good capacity retention of 95.8% and 94.8% after 200 cycles at room temperature,respectively.The capacity fading phenomenon of the doped samples at 50℃ and 1 C rate was significantly improved.Further,cations doping also enhanced the rate performance,especially for the LNCMO,the discharge specific capacity of 117.9 mA·h·g^(-1)can be obtained at a rate of 5 C. 展开更多
关键词 high voltage spinel Al/Co doping high temperature cycling stability
下载PDF
上一页 1 2 56 下一页 到第
使用帮助 返回顶部