Much more nuclear energy capacity is needed than currently installed to meet the demand of energy and the requirement on environment protection in the next decades. More stringent nuclear safety standards have to be e...Much more nuclear energy capacity is needed than currently installed to meet the demand of energy and the requirement on environment protection in the next decades. More stringent nuclear safety standards have to be established for future nuclear power plants.The philosophy of a catastrophe free nuclear technology is presented in this paper. The issue of afterheat removal of high temperature gas cooled reactors is handled.It is a striking inherent safety feature of the modular high temperature gas cooled reactor design that the afterheat removal takes place without any active core cooling systems.展开更多
Online fuel pebble burnup measurement in a future high temperature gas cooling reactor is proposed for implementation through a high purity germanimn (HPGe) gamma spectrometer. By using KORIGEN software and MCNP Mon...Online fuel pebble burnup measurement in a future high temperature gas cooling reactor is proposed for implementation through a high purity germanimn (HPGe) gamma spectrometer. By using KORIGEN software and MCNP Monte Carlo simulations, the single pebble gamma radiations to be recorded in the detector are simulated under different, irradiation histories. A specially developed algorithm is applied to analyze the generated spectra to reconstruct the gamma activity of the ~arCs monitoring nuclide. It is demonstrated that by taking into account the intense interfering peaks, the 137Cs activity in the spent pebbles can be derived with a standard deviation of 3.0% (l(r). The results support the feasibility of utilizing the HPGe spectrometry in the online determination of the pebble burimp in future modular pebble bed reactors.展开更多
The success of high temperature gas cooled reactor depends upon the safety and quality of the coated particle fuel. The understanding and evaluation of this fuel requires the development of an integrated mechanistic f...The success of high temperature gas cooled reactor depends upon the safety and quality of the coated particle fuel. The understanding and evaluation of this fuel requires the development of an integrated mechanistic fuel performance model that fully describes the mechanical and physicochemical behavior of the fuel particle under irradiation. In this paper, a review of the analytical capability of some of the existing computer codes for coated particle fuel was performed. These existing models and codes include FZJ model, JAERI model, Stress3 model, ATLAS model, PARFUME model and TIMCOAT model. The theoretic model, methodology, calculation parameters and benchmark of these codes were classified. Based on the failure mechanism of coated particle, the advantage and limits of the models were compared and discussed. The calculated results of the coated particles for China HTR-10 by using some existing code are shown. Finally, problems and challenges in fuel performance modeling were listed.展开更多
A 10MW High Temperature Gas Cooled Reactor (HTR-10) designed by the Institute of Nuclear Energy Technology (INET) is now being constructed. The steam generator (SG) in the HTR-10 is one of the most important component...A 10MW High Temperature Gas Cooled Reactor (HTR-10) designed by the Institute of Nuclear Energy Technology (INET) is now being constructed. The steam generator (SG) in the HTR-10 is one of the most important components for reactor safety. The thermal-hydraulic performance of the SG was investigated. A full scale HTR-10 Steam Generator Two Tube Engineering Model Test Facility (SGTM-10) was installed and tested at INET. This paper describes the SGTM-10 thermal hydraulic experimental system in detail. The SGTM-10 simulates the actual thermal and structural parameters of the HTR-10. The SGTM-10 includes three separated loops: the primary helium loop, the secondary water loop, and the tertiary cooling water loop. Two parallel tubes are arranged in the test assembly. The main experimental equipment is shown in the paper. Expermental results are given illustrating the effects of the outlet pressures, the heating power, and the inlet subcooling.展开更多
文摘Much more nuclear energy capacity is needed than currently installed to meet the demand of energy and the requirement on environment protection in the next decades. More stringent nuclear safety standards have to be established for future nuclear power plants.The philosophy of a catastrophe free nuclear technology is presented in this paper. The issue of afterheat removal of high temperature gas cooled reactors is handled.It is a striking inherent safety feature of the modular high temperature gas cooled reactor design that the afterheat removal takes place without any active core cooling systems.
基金Supported by National Science and Technology Major Project(ZX06901)National Natural Science Foundation of China(10975083,11079025)Tsinghua University Initiative Scientific Research Program
文摘Online fuel pebble burnup measurement in a future high temperature gas cooling reactor is proposed for implementation through a high purity germanimn (HPGe) gamma spectrometer. By using KORIGEN software and MCNP Monte Carlo simulations, the single pebble gamma radiations to be recorded in the detector are simulated under different, irradiation histories. A specially developed algorithm is applied to analyze the generated spectra to reconstruct the gamma activity of the ~arCs monitoring nuclide. It is demonstrated that by taking into account the intense interfering peaks, the 137Cs activity in the spent pebbles can be derived with a standard deviation of 3.0% (l(r). The results support the feasibility of utilizing the HPGe spectrometry in the online determination of the pebble burimp in future modular pebble bed reactors.
文摘The success of high temperature gas cooled reactor depends upon the safety and quality of the coated particle fuel. The understanding and evaluation of this fuel requires the development of an integrated mechanistic fuel performance model that fully describes the mechanical and physicochemical behavior of the fuel particle under irradiation. In this paper, a review of the analytical capability of some of the existing computer codes for coated particle fuel was performed. These existing models and codes include FZJ model, JAERI model, Stress3 model, ATLAS model, PARFUME model and TIMCOAT model. The theoretic model, methodology, calculation parameters and benchmark of these codes were classified. Based on the failure mechanism of coated particle, the advantage and limits of the models were compared and discussed. The calculated results of the coated particles for China HTR-10 by using some existing code are shown. Finally, problems and challenges in fuel performance modeling were listed.
基金the State High- Tech Developments Plan of China!(No.86 3- 6 14- 0 2
文摘A 10MW High Temperature Gas Cooled Reactor (HTR-10) designed by the Institute of Nuclear Energy Technology (INET) is now being constructed. The steam generator (SG) in the HTR-10 is one of the most important components for reactor safety. The thermal-hydraulic performance of the SG was investigated. A full scale HTR-10 Steam Generator Two Tube Engineering Model Test Facility (SGTM-10) was installed and tested at INET. This paper describes the SGTM-10 thermal hydraulic experimental system in detail. The SGTM-10 simulates the actual thermal and structural parameters of the HTR-10. The SGTM-10 includes three separated loops: the primary helium loop, the secondary water loop, and the tertiary cooling water loop. Two parallel tubes are arranged in the test assembly. The main experimental equipment is shown in the paper. Expermental results are given illustrating the effects of the outlet pressures, the heating power, and the inlet subcooling.