Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing ...Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation.展开更多
This study embarks on a comprehensive examination of optimization techniques within GPU-based parallel programming models,pivotal for advancing high-performance computing(HPC).Emphasizing the transition of GPUs from g...This study embarks on a comprehensive examination of optimization techniques within GPU-based parallel programming models,pivotal for advancing high-performance computing(HPC).Emphasizing the transition of GPUs from graphic-centric processors to versatile computing units,it delves into the nuanced optimization of memory access,thread management,algorithmic design,and data structures.These optimizations are critical for exploiting the parallel processing capabilities of GPUs,addressingboth the theoretical frameworks and practical implementations.By integrating advanced strategies such as memory coalescing,dynamic scheduling,and parallel algorithmic transformations,this research aims to significantly elevate computational efficiency and throughput.The findings underscore the potential of optimized GPU programming to revolutionize computational tasks across various domains,highlighting a pathway towards achieving unparalleled processing power and efficiency in HPC environments.The paper not only contributes to the academic discourse on GPU optimization but also provides actionable insights for developers,fostering advancements in computational sciences and technology.展开更多
To investigate the assumptions proposed in this paper,the evolution law governing the strength and expansion performance of MgO and nano-MgO micro-expansive concrete in the environment of mineral powder was firstly ob...To investigate the assumptions proposed in this paper,the evolution law governing the strength and expansion performance of MgO and nano-MgO micro-expansive concrete in the environment of mineral powder was firstly observed in this study.Secondly,SEM,XRD,and TG-DSC microscopic tests were conducted to reveal the effects of the active mineral-powder admixture on the hydration degree and expansion performance of MgO and nano-MgO in HPC.Our experimental results successfully verified our hypothesis,which indicated that the expansion performance of macro-MgO and nano-MgO was indeed depressed by the addition of active mineral power admixtures,even though the mechanical property of concrete composites was effectively improved.Furthermore,the hydration test also demonstrated the negative interference on the mineral powders,which was induced by the expansion agents.It is found the amounts of hydrates tend to decrease because the mineral powder ratio reaches and exceeds 40%.Moreover,it is also concluded the effect of expansion agents is governed by the alkalinity cement paste,especially for the nano-MgO.In other words,the expansion performance of nano-MgO will vary more obviously with the hydration process,than MgO.The results of this study provide that effective experimental and theoretical data support the hydration-inhibition mechanism of magnesium expansive agents.展开更多
As a critical infrastructure of cloud computing,data center networks(DCNs)directly determine the service performance of data centers,which provide computing services for various applications such as big data processin...As a critical infrastructure of cloud computing,data center networks(DCNs)directly determine the service performance of data centers,which provide computing services for various applications such as big data processing and artificial intelligence.However,current architectures of data center networks suffer from a long routing path and a low fault tolerance between source and destination servers,which is hard to satisfy the requirements of high-performance data center networks.Based on dual-port servers and Clos network structure,this paper proposed a novel architecture RClos to construct high-performance data center networks.Logically,the proposed architecture is constructed by inserting a dual-port server into each pair of adjacent switches in the fabric of switches,where switches are connected in the form of a ring Clos structure.We describe the structural properties of RClos in terms of network scale,bisection bandwidth,and network diameter.RClos architecture inherits characteristics of its embedded Clos network,which can accommodate a large number of servers with a small average path length.The proposed architecture embraces a high fault tolerance,which adapts to the construction of various data center networks.For example,the average path length between servers is 3.44,and the standardized bisection bandwidth is 0.8 in RClos(32,5).The result of numerical experiments shows that RClos enjoys a small average path length and a high network fault tolerance,which is essential in the construction of high-performance data center networks.展开更多
Today, in the field of computer networks, new services have been developed on the Internet or intranets, including the mail server, database management, sounds, videos and the web server itself Apache. The number of s...Today, in the field of computer networks, new services have been developed on the Internet or intranets, including the mail server, database management, sounds, videos and the web server itself Apache. The number of solutions for this server is therefore growing continuously, these services are becoming more and more complex and expensive, without being able to fulfill the needs of the users. The absence of benchmarks for websites with dynamic content is the major obstacle to research in this area. These users place high demands on the speed of access to information on the Internet. This is why the performance of the web server is critically important. Several factors influence performance, such as server execution speed, network saturation on the internet or intranet, increased response time, and throughputs. By measuring these factors, we propose a performance evaluation strategy for servers that allows us to determine the actual performance of different servers in terms of user satisfaction. Furthermore, we identified performance characteristics such as throughput, resource utilization, and response time of a system through measurement and modeling by simulation. Finally, we present a simple queue model of an Apache web server, which reasonably represents the behavior of a saturated web server using the Simulink model in Matlab (Matrix Laboratory) and also incorporates sporadic incoming traffic. We obtain server performance metrics such as average response time and throughput through simulations. Compared to other models, our model is conceptually straightforward. The model has been validated through measurements and simulations during the tests that we conducted.展开更多
The rapid expansion of artificial intelligence(AI)applications has raised significant concerns about user privacy,prompting the development of privacy-preserving machine learning(ML)paradigms such as federated learnin...The rapid expansion of artificial intelligence(AI)applications has raised significant concerns about user privacy,prompting the development of privacy-preserving machine learning(ML)paradigms such as federated learning(FL).FL enables the distributed training of ML models,keeping data on local devices and thus addressing the privacy concerns of users.However,challenges arise from the heterogeneous nature of mobile client devices,partial engagement of training,and non-independent identically distributed(non-IID)data distribution,leading to performance degradation and optimization objective bias in FL training.With the development of 5G/6G networks and the integration of cloud computing edge computing resources,globally distributed cloud computing resources can be effectively utilized to optimize the FL process.Through the specific parameters of the server through the selection mechanism,it does not increase the monetary cost and reduces the network latency overhead,but also balances the objectives of communication optimization and low engagement mitigation that cannot be achieved simultaneously in a single-server framework of existing works.In this paper,we propose the FedAdaSS algorithm,an adaptive parameter server selection mechanism designed to optimize the training efficiency in each round of FL training by selecting the most appropriate server as the parameter server.Our approach leverages the flexibility of cloud resource computing power,and allows organizers to strategically select servers for data broadcasting and aggregation,thus improving training performance while maintaining cost efficiency.The FedAdaSS algorithm estimates the utility of client systems and servers and incorporates an adaptive random reshuffling strategy that selects the optimal server in each round of the training process.Theoretical analysis confirms the convergence of FedAdaSS under strong convexity and L-smooth assumptions,and comparative experiments within the FLSim framework demonstrate a reduction in training round-to-accuracy by 12%–20%compared to the Federated Averaging(FedAvg)with random reshuffling method under unique server.Furthermore,FedAdaSS effectively mitigates performance loss caused by low client engagement,reducing the loss indicator by 50%.展开更多
This study developed a mail server program using Socket API and Python.The program uses the Hypertext Transfer Protocol(HTTP)to receive emails from browser clients and forward them to actual email service providers vi...This study developed a mail server program using Socket API and Python.The program uses the Hypertext Transfer Protocol(HTTP)to receive emails from browser clients and forward them to actual email service providers via the Simple Mail Transfer Protocol(SMTP).As a web server,it handles Transmission Control Protocol(TCP)connection requests from browsers,receives HTTP commands and email data,and temporarily stores the emails in a file.Simultaneously,as an SMTP client,the program establishes a TCP connection with the actual mail server,sends SMTP commands,and transmits the previously saved emails.In addition,we also analyzed security issues and the efficiency and availability of this server,providing insights into the design of SMTP mail servers.展开更多
In order to investigate the effects of two mineral admixtures (i. e., fly ash and ground slag)on initial defects existing in concrete microstructures, a high-resolution X-ray micro-CT( micro-focus computer tomogra...In order to investigate the effects of two mineral admixtures (i. e., fly ash and ground slag)on initial defects existing in concrete microstructures, a high-resolution X-ray micro-CT( micro-focus computer tomography)is employed to quantitatively analyze the initial defects in four series of highperformance concrete (HPC)specimens with additions of different mineral admixtures. The nigh-resolution 3D images of microstructures and filtered defects are reconstructed by micro- CT software. The size distribution and volume fractions of initial defects are analyzed based on 3D and 2D micro-CT images. The analysis results are verified by experimental results of watersuction tests. The results show that the additions of mineral admixtures in concrete as cementitious materials greatly change the geometrical properties of the microstructures and the spatial features of defects by physical-chemistry actions of these mineral admixtures. This is the major cause of the differences between the mechanical behaviors of HPC with and without mineral admixtures when the water-to-binder ratio and the size distribution of aggregates are constant.展开更多
The peroxyoxalate chemiluminescence(CL)detection of fatty acids in human se- rum combined with high-performance liquid chromatography (HPLC)is described.Some fatty acids in serum were extracted with a 1 :1(v/v)mixture...The peroxyoxalate chemiluminescence(CL)detection of fatty acids in human se- rum combined with high-performance liquid chromatography (HPLC)is described.Some fatty acids in serum were extracted with a 1 :1(v/v)mixture of chloroform-n-heptane.2-(4-Hydrazinocarbonyl- phenyl)-4,5-diphenylimidazole (HCPI) was used as a fluorescent labelling reagent of the fatty acids. The labelling reaction was carried out at 30℃ for 1 h at pH 6.5 and the resulting reaction mixture was sudjected to HPLC. The labelled fatty acid C_(17)(P-C_(17))was used as the internal standard. The la- belled fatty acids C_(16) and C_(18) were separated within 18 min on an ODS-8OTM column (150 mm× 6 mm ID,5μm,Tosoh Japan).The calibrlation curves of fatty acids from the spiked control serum were Y_1=-0.003 7 + 0.0028X_1,r=0.994 for FA C_( 16) and Y_2=0.00 1 2 + 0.00098X_2,r=0.999 for FA C_( 18),respectively.The average recoveries of facids from the spiked contrl serum were 107.2%(n=8,RSD=4.3%)for FA C_(16) and 97.35%(n=8, RSD=4.0%)for FA C_(18),respectively.The lower detection limits of fatty acids after reaction were 12μmol per 20μl injection for FA C_(16) and 18 μmol per 20μl injection for FA C_(18),respectively(signal to noise ratio, S/N=2).The HPLC/CL method was applied to the determination of FA C_(16) and FA C_(18) in normal human serum and the results showed that the concentrations of fatty acids in normal human serum were 0.134 ± 0.009 μ mol/ml serum(n=5) for FA C_(16) and 0.052±0.028 μmol/ml serum(n=5)for FA C_(18),respectively.展开更多
Aim To quantitatively determine five nucleosides and nucleobases, including cytidine, uridine, guanosine, adenosine and uracil in different parts of Panax notoginseng. Methods Separation was performed on a Zorbax SB-A...Aim To quantitatively determine five nucleosides and nucleobases, including cytidine, uridine, guanosine, adenosine and uracil in different parts of Panax notoginseng. Methods Separation was performed on a Zorbax SB-Aq column using a gradient elution with mobile phase of 8 mmol^L-1 ammonium acetate aqueous solution (A) and methanol (B). The assay was carried out at a flow rate of 1 mL·min^-1 at 25 ℃ with the diode-array detection at 260 nm. Results Cytidine, uridine, guanosine, adenosine and uracil had good linearity in the ranges of 1.79 - 57.40 μg·mL^-1 (r^2 = 1.0000), 3.30 - 105.60 μg·mL^-1 (r^2 = 1.0000), 3.09 - 98.80 μg·mL^ -1(r^2 = 0.9999), 2.77 - 88.60 μg·mL^-1 (r^2 = 1.0000) and 0.38 - 12.30 μg·mL ^-1 (r^2 = 1.0000) with average recoveries of 93.9%, 96.5%, 92.7%, 93.2% and 98.8%, respectively. The content of cytidine, uridine, guanosine, adenosine and uracil in different parts of P. notogingeng were significantly different. Conclusion This is the first report on quantitative determination of nucleosides and nucleobases in P notoginseng.展开更多
The compositions and contents of ginsenbsides in Panax ginseng,P.quinquefolium and P.notoginseng were determined and compared by reversed-phase High-Performance Liquid Chro- matography(HPLC).The method was performed o...The compositions and contents of ginsenbsides in Panax ginseng,P.quinquefolium and P.notoginseng were determined and compared by reversed-phase High-Performance Liquid Chro- matography(HPLC).The method was performed on an Alltech Adsorbosphere HS C_(18) column,using 5×10^(-3)M NaH_2PO_4-H_3PO_4 buffer solution(pH 3.0)and acetonitrile-water(50:50)as gradient eluents. The baseline separation of ginsenosides Rb_1,Rb_2,Rb_1,Rc,Rd,Rf,Ro,and Re+Rg_1 was obtained in one analytical run.The ginsenosides are directly detected at 203 nm.The detection limit is 40μg at a signal to noise ratio of 3:1.The improved sample preparation and clean-up prior to injection with SEP-PAK C_(18)cartridge strongly reduced the front peaks caused by the impurities in the methanolic extracts of samples to afford a smooth baseline and clear background.The HPLC patterns of methanolic extracts mainly including the ginsenosides were found capable of serving as chemical fingerprints to differentiate the three species from each other.It was also found that there are no significant diffe- rences of the HPLC patterns between the wild Panax ginseng and the cultivated,the white and the red ginsengs,Chinese and Korean red ginsengs,and the tap roots of Panax ginseng collected in four consecutive months,only certain differences in contents of ginsenosides do exist.The contents of the nine major ginsenosides present in the rhizome,tap root and rootlet as well as the leaf of Panax quinquefolium were also determined and compared.展开更多
During the past decades,with the increasing demands in lightweight structural materials,Mg alloys with low density and high performance have been extensively investigated and partly applied in some industries.Especial...During the past decades,with the increasing demands in lightweight structural materials,Mg alloys with low density and high performance have been extensively investigated and partly applied in some industries.Especially when rare earth(RE)elements are added as major alloying elements to Mg alloys,the alloy strength and creep resistance are greatly improved,which have promoted several series of Mg-RE alloys.This paper reviews the progress and developments of high-performance Mg-RE alloys in recent years with emphasis on cast alloys.The main contents include the alloy design,melt purification,grain refinement,castability,novel liquid casting and semisolid forming approaches,and the industrial applications or trials made of Mg-RE alloys.The review will provide insights for future developments of new alloys,techniques and applications of Mg alloys.展开更多
Concrete is a continuously evolving material, and even the definition of high-performance concrete has changed over time. In this paper, high-performance characteristics of concrete material are considered to be those...Concrete is a continuously evolving material, and even the definition of high-performance concrete has changed over time. In this paper, high-performance characteristics of concrete material are considered to be those that support the desirable durability, resilience, and sustainability of civil infrastructure that directly impact our quality of life. It is proposed that high-performance material characteristics include tensile ductility, autogenous crack-width control, and material “greenness.” Furthermore, smart functionalities should be aimed at enhancing infrastructure durability, resilience, and sustainability by responding to changes in the surrounding environment of the structure in order to perform desirable functions, thus causing the material to behave in a manner more akin to certain biological materials. Based on recent advances in engineered cementitious composites (ECCs), this paper suggests that concrete embodying such high-performance characteristics and smart multifunctionalities can be designed, and holds the potential to fulfill the expected civil infrastructure needs of the 21st century. Highlights of relevant properties of ECCs are provided, and directions for necessary future research are indicated.展开更多
AIM: To perform plasma free amino acid (PFAA) profiling of esophageal squamous cell carcinoma (ESCC) patients at different pathological stages and healthy subjects.
The various advantages of organic polymer monoliths, including relatively simple preparation processes,abundant monomer availability, and a wide application range of pH, have attracted the attention of chromatographer...The various advantages of organic polymer monoliths, including relatively simple preparation processes,abundant monomer availability, and a wide application range of pH, have attracted the attention of chromatographers. Organic polymer monoliths prepared by traditional methods only have macropores and mesopores, and micropores of less than 50 nm are not commonly available. These typical monoliths are suitable for the separation of biological macromolecules such as proteins and nucleic acids, but their ability to separate small molecular compounds is poor. In recent years, researchers have successfully modified polymer monoliths to achieve uniform compact pore structures. In particular, microporous materials with pores of 50 nm or less that can provide a large enough surface area are the key to the separation of small molecules. In this review, preparation methods of polymer monoliths for high-performance liquid chromatography, including ultra-high cross-linking technology, post-surface modification, and the addition of nanomaterials, are discussed. Modified monolithic columns have been used successfully to separate small molecules with obvious improvements in column efficiency.展开更多
In this study,MnCo2O4 nanosheets were proposed to be utilized as an electrode material for supercapacitors.A two-step hydrothermal method with post-annealing treatment was employed in preparation of the nanostructures...In this study,MnCo2O4 nanosheets were proposed to be utilized as an electrode material for supercapacitors.A two-step hydrothermal method with post-annealing treatment was employed in preparation of the nanostructures.MnCo2O4 electrode delivered a high specific capacitance of 2000 F g^-1 at 0.5 A g^-1,remarkable high-rate capability of 1150 F g^-1 at 20 A g^-1,and an excellent cycling stability of 92.3%at 5 A g^-1 after 5000 cycles.It is found that a three-electrode supercapacitor based on MnCo2O4 exhibits a promising electrochemical performance,better than the other similar materials,benefited from the synergistic effects of MnCo2O4 nanosheets.In fact,the self-assembly of nanosheets structure with high specific surface area and mesoporous structure can potentially enhance the electrochemical performance of supercapacitors.展开更多
The improvements of the mechanical properties, including bulk density of fresh mixtures, elastic modulus, and compressive strengths of four high-performance concrete mixtures, made with the addition of fly ash, refine...The improvements of the mechanical properties, including bulk density of fresh mixtures, elastic modulus, and compressive strengths of four high-performance concrete mixtures, made with the addition of fly ash, refined ground blast - furnace microslag (microslag) and silica fume are studied. The concrete mixtures were determined based on the dispersion testing results. The study indicates that the elastic modulus at 28 and 91 days, and compressive strengths of the concretes are improved a lot when fly ash and microslag by 25 percent by weight of cement are added into the mixtures individually. The improvement is especially evident when silica fume by 5 percent and fly ash by 25 percent by weight of cement are added together into the mixture, while the fresh concrete mixture keeps a good workability. Through the analysis of chemically combined water ratios of the four mixtures at various hydration ages, it is found that the addition of all these mineral mixtures are beneficial to the hydration process, especially, at later stages, which might be one of the reasons for the improvement of mechanical properties. (Author abstract) 4 Refs.展开更多
基金supported by the National Natural the Science Foundation of China(51971042,51901028)the Chongqing Academician Special Fund(cstc2020yszxjcyj X0001)+1 种基金the China Scholarship Council(CSC)Norwegian University of Science and Technology(NTNU)for their financial and technical support。
文摘Magnesium(Mg),being the lightest structural metal,holds immense potential for widespread applications in various fields.The development of high-performance and cost-effective Mg alloys is crucial to further advancing their commercial utilization.With the rapid advancement of machine learning(ML)technology in recent years,the“data-driven''approach for alloy design has provided new perspectives and opportunities for enhancing the performance of Mg alloys.This paper introduces a novel regression-based Bayesian optimization active learning model(RBOALM)for the development of high-performance Mg-Mn-based wrought alloys.RBOALM employs active learning to automatically explore optimal alloy compositions and process parameters within predefined ranges,facilitating the discovery of superior alloy combinations.This model further integrates pre-established regression models as surrogate functions in Bayesian optimization,significantly enhancing the precision of the design process.Leveraging RBOALM,several new high-performance alloys have been successfully designed and prepared.Notably,after mechanical property testing of the designed alloys,the Mg-2.1Zn-2.0Mn-0.5Sn-0.1Ca alloy demonstrates exceptional mechanical properties,including an ultimate tensile strength of 406 MPa,a yield strength of 287 MPa,and a 23%fracture elongation.Furthermore,the Mg-2.7Mn-0.5Al-0.1Ca alloy exhibits an ultimate tensile strength of 211 MPa,coupled with a remarkable 41%fracture elongation.
文摘This study embarks on a comprehensive examination of optimization techniques within GPU-based parallel programming models,pivotal for advancing high-performance computing(HPC).Emphasizing the transition of GPUs from graphic-centric processors to versatile computing units,it delves into the nuanced optimization of memory access,thread management,algorithmic design,and data structures.These optimizations are critical for exploiting the parallel processing capabilities of GPUs,addressingboth the theoretical frameworks and practical implementations.By integrating advanced strategies such as memory coalescing,dynamic scheduling,and parallel algorithmic transformations,this research aims to significantly elevate computational efficiency and throughput.The findings underscore the potential of optimized GPU programming to revolutionize computational tasks across various domains,highlighting a pathway towards achieving unparalleled processing power and efficiency in HPC environments.The paper not only contributes to the academic discourse on GPU optimization but also provides actionable insights for developers,fostering advancements in computational sciences and technology.
基金Funded by the National Natural Science Foundation of China(No.51578325)。
文摘To investigate the assumptions proposed in this paper,the evolution law governing the strength and expansion performance of MgO and nano-MgO micro-expansive concrete in the environment of mineral powder was firstly observed in this study.Secondly,SEM,XRD,and TG-DSC microscopic tests were conducted to reveal the effects of the active mineral-powder admixture on the hydration degree and expansion performance of MgO and nano-MgO in HPC.Our experimental results successfully verified our hypothesis,which indicated that the expansion performance of macro-MgO and nano-MgO was indeed depressed by the addition of active mineral power admixtures,even though the mechanical property of concrete composites was effectively improved.Furthermore,the hydration test also demonstrated the negative interference on the mineral powders,which was induced by the expansion agents.It is found the amounts of hydrates tend to decrease because the mineral powder ratio reaches and exceeds 40%.Moreover,it is also concluded the effect of expansion agents is governed by the alkalinity cement paste,especially for the nano-MgO.In other words,the expansion performance of nano-MgO will vary more obviously with the hydration process,than MgO.The results of this study provide that effective experimental and theoretical data support the hydration-inhibition mechanism of magnesium expansive agents.
基金This work was supported by the Hainan Provincial Natural Science Foundation of China(620RC560,2019RC096,620RC562)the Scientific Research Setup Fund of Hainan University(KYQD(ZR)1877)+2 种基金the National Natural Science Foundation of China(62162021,82160345,61802092)the key research and development program of Hainan province(ZDYF2020199,ZDYF2021GXJS017)the key science and technology plan project of Haikou(2011-016).
文摘As a critical infrastructure of cloud computing,data center networks(DCNs)directly determine the service performance of data centers,which provide computing services for various applications such as big data processing and artificial intelligence.However,current architectures of data center networks suffer from a long routing path and a low fault tolerance between source and destination servers,which is hard to satisfy the requirements of high-performance data center networks.Based on dual-port servers and Clos network structure,this paper proposed a novel architecture RClos to construct high-performance data center networks.Logically,the proposed architecture is constructed by inserting a dual-port server into each pair of adjacent switches in the fabric of switches,where switches are connected in the form of a ring Clos structure.We describe the structural properties of RClos in terms of network scale,bisection bandwidth,and network diameter.RClos architecture inherits characteristics of its embedded Clos network,which can accommodate a large number of servers with a small average path length.The proposed architecture embraces a high fault tolerance,which adapts to the construction of various data center networks.For example,the average path length between servers is 3.44,and the standardized bisection bandwidth is 0.8 in RClos(32,5).The result of numerical experiments shows that RClos enjoys a small average path length and a high network fault tolerance,which is essential in the construction of high-performance data center networks.
文摘Today, in the field of computer networks, new services have been developed on the Internet or intranets, including the mail server, database management, sounds, videos and the web server itself Apache. The number of solutions for this server is therefore growing continuously, these services are becoming more and more complex and expensive, without being able to fulfill the needs of the users. The absence of benchmarks for websites with dynamic content is the major obstacle to research in this area. These users place high demands on the speed of access to information on the Internet. This is why the performance of the web server is critically important. Several factors influence performance, such as server execution speed, network saturation on the internet or intranet, increased response time, and throughputs. By measuring these factors, we propose a performance evaluation strategy for servers that allows us to determine the actual performance of different servers in terms of user satisfaction. Furthermore, we identified performance characteristics such as throughput, resource utilization, and response time of a system through measurement and modeling by simulation. Finally, we present a simple queue model of an Apache web server, which reasonably represents the behavior of a saturated web server using the Simulink model in Matlab (Matrix Laboratory) and also incorporates sporadic incoming traffic. We obtain server performance metrics such as average response time and throughput through simulations. Compared to other models, our model is conceptually straightforward. The model has been validated through measurements and simulations during the tests that we conducted.
基金supported in part by the National Natural Science Foundation of China under Grant U22B2005,Grant 62372462.
文摘The rapid expansion of artificial intelligence(AI)applications has raised significant concerns about user privacy,prompting the development of privacy-preserving machine learning(ML)paradigms such as federated learning(FL).FL enables the distributed training of ML models,keeping data on local devices and thus addressing the privacy concerns of users.However,challenges arise from the heterogeneous nature of mobile client devices,partial engagement of training,and non-independent identically distributed(non-IID)data distribution,leading to performance degradation and optimization objective bias in FL training.With the development of 5G/6G networks and the integration of cloud computing edge computing resources,globally distributed cloud computing resources can be effectively utilized to optimize the FL process.Through the specific parameters of the server through the selection mechanism,it does not increase the monetary cost and reduces the network latency overhead,but also balances the objectives of communication optimization and low engagement mitigation that cannot be achieved simultaneously in a single-server framework of existing works.In this paper,we propose the FedAdaSS algorithm,an adaptive parameter server selection mechanism designed to optimize the training efficiency in each round of FL training by selecting the most appropriate server as the parameter server.Our approach leverages the flexibility of cloud resource computing power,and allows organizers to strategically select servers for data broadcasting and aggregation,thus improving training performance while maintaining cost efficiency.The FedAdaSS algorithm estimates the utility of client systems and servers and incorporates an adaptive random reshuffling strategy that selects the optimal server in each round of the training process.Theoretical analysis confirms the convergence of FedAdaSS under strong convexity and L-smooth assumptions,and comparative experiments within the FLSim framework demonstrate a reduction in training round-to-accuracy by 12%–20%compared to the Federated Averaging(FedAvg)with random reshuffling method under unique server.Furthermore,FedAdaSS effectively mitigates performance loss caused by low client engagement,reducing the loss indicator by 50%.
文摘This study developed a mail server program using Socket API and Python.The program uses the Hypertext Transfer Protocol(HTTP)to receive emails from browser clients and forward them to actual email service providers via the Simple Mail Transfer Protocol(SMTP).As a web server,it handles Transmission Control Protocol(TCP)connection requests from browsers,receives HTTP commands and email data,and temporarily stores the emails in a file.Simultaneously,as an SMTP client,the program establishes a TCP connection with the actual mail server,sends SMTP commands,and transmits the previously saved emails.In addition,we also analyzed security issues and the efficiency and availability of this server,providing insights into the design of SMTP mail servers.
基金The Scholarship Supported by Ministry of Education of China for Research Abroad(No.3037[2006])the Excellent Doctoral Dissertation Foundation of Southeast University (No.YBTJ-0512)the National Basic Research Program of China(973Program)(No.2009CB623203)
文摘In order to investigate the effects of two mineral admixtures (i. e., fly ash and ground slag)on initial defects existing in concrete microstructures, a high-resolution X-ray micro-CT( micro-focus computer tomography)is employed to quantitatively analyze the initial defects in four series of highperformance concrete (HPC)specimens with additions of different mineral admixtures. The nigh-resolution 3D images of microstructures and filtered defects are reconstructed by micro- CT software. The size distribution and volume fractions of initial defects are analyzed based on 3D and 2D micro-CT images. The analysis results are verified by experimental results of watersuction tests. The results show that the additions of mineral admixtures in concrete as cementitious materials greatly change the geometrical properties of the microstructures and the spatial features of defects by physical-chemistry actions of these mineral admixtures. This is the major cause of the differences between the mechanical behaviors of HPC with and without mineral admixtures when the water-to-binder ratio and the size distribution of aggregates are constant.
文摘The peroxyoxalate chemiluminescence(CL)detection of fatty acids in human se- rum combined with high-performance liquid chromatography (HPLC)is described.Some fatty acids in serum were extracted with a 1 :1(v/v)mixture of chloroform-n-heptane.2-(4-Hydrazinocarbonyl- phenyl)-4,5-diphenylimidazole (HCPI) was used as a fluorescent labelling reagent of the fatty acids. The labelling reaction was carried out at 30℃ for 1 h at pH 6.5 and the resulting reaction mixture was sudjected to HPLC. The labelled fatty acid C_(17)(P-C_(17))was used as the internal standard. The la- belled fatty acids C_(16) and C_(18) were separated within 18 min on an ODS-8OTM column (150 mm× 6 mm ID,5μm,Tosoh Japan).The calibrlation curves of fatty acids from the spiked control serum were Y_1=-0.003 7 + 0.0028X_1,r=0.994 for FA C_( 16) and Y_2=0.00 1 2 + 0.00098X_2,r=0.999 for FA C_( 18),respectively.The average recoveries of facids from the spiked contrl serum were 107.2%(n=8,RSD=4.3%)for FA C_(16) and 97.35%(n=8, RSD=4.0%)for FA C_(18),respectively.The lower detection limits of fatty acids after reaction were 12μmol per 20μl injection for FA C_(16) and 18 μmol per 20μl injection for FA C_(18),respectively(signal to noise ratio, S/N=2).The HPLC/CL method was applied to the determination of FA C_(16) and FA C_(18) in normal human serum and the results showed that the concentrations of fatty acids in normal human serum were 0.134 ± 0.009 μ mol/ml serum(n=5) for FA C_(16) and 0.052±0.028 μmol/ml serum(n=5)for FA C_(18),respectively.
文摘Aim To quantitatively determine five nucleosides and nucleobases, including cytidine, uridine, guanosine, adenosine and uracil in different parts of Panax notoginseng. Methods Separation was performed on a Zorbax SB-Aq column using a gradient elution with mobile phase of 8 mmol^L-1 ammonium acetate aqueous solution (A) and methanol (B). The assay was carried out at a flow rate of 1 mL·min^-1 at 25 ℃ with the diode-array detection at 260 nm. Results Cytidine, uridine, guanosine, adenosine and uracil had good linearity in the ranges of 1.79 - 57.40 μg·mL^-1 (r^2 = 1.0000), 3.30 - 105.60 μg·mL^-1 (r^2 = 1.0000), 3.09 - 98.80 μg·mL^ -1(r^2 = 0.9999), 2.77 - 88.60 μg·mL^-1 (r^2 = 1.0000) and 0.38 - 12.30 μg·mL ^-1 (r^2 = 1.0000) with average recoveries of 93.9%, 96.5%, 92.7%, 93.2% and 98.8%, respectively. The content of cytidine, uridine, guanosine, adenosine and uracil in different parts of P. notogingeng were significantly different. Conclusion This is the first report on quantitative determination of nucleosides and nucleobases in P notoginseng.
文摘The compositions and contents of ginsenbsides in Panax ginseng,P.quinquefolium and P.notoginseng were determined and compared by reversed-phase High-Performance Liquid Chro- matography(HPLC).The method was performed on an Alltech Adsorbosphere HS C_(18) column,using 5×10^(-3)M NaH_2PO_4-H_3PO_4 buffer solution(pH 3.0)and acetonitrile-water(50:50)as gradient eluents. The baseline separation of ginsenosides Rb_1,Rb_2,Rb_1,Rc,Rd,Rf,Ro,and Re+Rg_1 was obtained in one analytical run.The ginsenosides are directly detected at 203 nm.The detection limit is 40μg at a signal to noise ratio of 3:1.The improved sample preparation and clean-up prior to injection with SEP-PAK C_(18)cartridge strongly reduced the front peaks caused by the impurities in the methanolic extracts of samples to afford a smooth baseline and clear background.The HPLC patterns of methanolic extracts mainly including the ginsenosides were found capable of serving as chemical fingerprints to differentiate the three species from each other.It was also found that there are no significant diffe- rences of the HPLC patterns between the wild Panax ginseng and the cultivated,the white and the red ginsengs,Chinese and Korean red ginsengs,and the tap roots of Panax ginseng collected in four consecutive months,only certain differences in contents of ginsenosides do exist.The contents of the nine major ginsenosides present in the rhizome,tap root and rootlet as well as the leaf of Panax quinquefolium were also determined and compared.
基金This work is supported by the National Natural Science Foundation of China(Grant Nos.51775334,51821001 and 51701124)National Key Research and Development Program of China(Grant No.2016YFB0701205)+3 种基金China Postdoctoral Science Foundation(Grant No.2020M671360)Natural Science Foundation for Young of Jiangsu Province(Grant No.BK20190863)Jiangsu“Mass Innovation and Entrepreneurship”Talent Program(Shuang Chuang Ph.Ds,2018)Open Research Fund of the State Key Laboratory of Metal Matrix Composites(Grant No.sklmmc-kf18-08).
文摘During the past decades,with the increasing demands in lightweight structural materials,Mg alloys with low density and high performance have been extensively investigated and partly applied in some industries.Especially when rare earth(RE)elements are added as major alloying elements to Mg alloys,the alloy strength and creep resistance are greatly improved,which have promoted several series of Mg-RE alloys.This paper reviews the progress and developments of high-performance Mg-RE alloys in recent years with emphasis on cast alloys.The main contents include the alloy design,melt purification,grain refinement,castability,novel liquid casting and semisolid forming approaches,and the industrial applications or trials made of Mg-RE alloys.The review will provide insights for future developments of new alloys,techniques and applications of Mg alloys.
基金supported by a grant from the CMMI program at the United States National Science Foundation(1634694).
文摘Concrete is a continuously evolving material, and even the definition of high-performance concrete has changed over time. In this paper, high-performance characteristics of concrete material are considered to be those that support the desirable durability, resilience, and sustainability of civil infrastructure that directly impact our quality of life. It is proposed that high-performance material characteristics include tensile ductility, autogenous crack-width control, and material “greenness.” Furthermore, smart functionalities should be aimed at enhancing infrastructure durability, resilience, and sustainability by responding to changes in the surrounding environment of the structure in order to perform desirable functions, thus causing the material to behave in a manner more akin to certain biological materials. Based on recent advances in engineered cementitious composites (ECCs), this paper suggests that concrete embodying such high-performance characteristics and smart multifunctionalities can be designed, and holds the potential to fulfill the expected civil infrastructure needs of the 21st century. Highlights of relevant properties of ECCs are provided, and directions for necessary future research are indicated.
基金Supported by National Natural Science Foundation of China,Grant No.81360356Scientific Research Foundation of Xinjiang Medical University,Grant No.XJC201221
文摘AIM: To perform plasma free amino acid (PFAA) profiling of esophageal squamous cell carcinoma (ESCC) patients at different pathological stages and healthy subjects.
文摘The various advantages of organic polymer monoliths, including relatively simple preparation processes,abundant monomer availability, and a wide application range of pH, have attracted the attention of chromatographers. Organic polymer monoliths prepared by traditional methods only have macropores and mesopores, and micropores of less than 50 nm are not commonly available. These typical monoliths are suitable for the separation of biological macromolecules such as proteins and nucleic acids, but their ability to separate small molecular compounds is poor. In recent years, researchers have successfully modified polymer monoliths to achieve uniform compact pore structures. In particular, microporous materials with pores of 50 nm or less that can provide a large enough surface area are the key to the separation of small molecules. In this review, preparation methods of polymer monoliths for high-performance liquid chromatography, including ultra-high cross-linking technology, post-surface modification, and the addition of nanomaterials, are discussed. Modified monolithic columns have been used successfully to separate small molecules with obvious improvements in column efficiency.
基金supported by the National Natural Science Foundation of China (51572194)the National Key Research and Development Program of China (2018YFB0105900)
文摘In this study,MnCo2O4 nanosheets were proposed to be utilized as an electrode material for supercapacitors.A two-step hydrothermal method with post-annealing treatment was employed in preparation of the nanostructures.MnCo2O4 electrode delivered a high specific capacitance of 2000 F g^-1 at 0.5 A g^-1,remarkable high-rate capability of 1150 F g^-1 at 20 A g^-1,and an excellent cycling stability of 92.3%at 5 A g^-1 after 5000 cycles.It is found that a three-electrode supercapacitor based on MnCo2O4 exhibits a promising electrochemical performance,better than the other similar materials,benefited from the synergistic effects of MnCo2O4 nanosheets.In fact,the self-assembly of nanosheets structure with high specific surface area and mesoporous structure can potentially enhance the electrochemical performance of supercapacitors.
基金Funded by the Reasearch Grant Council to Hongkong University of Science and Technology (Grant No. R1G94195. EG07).
文摘The improvements of the mechanical properties, including bulk density of fresh mixtures, elastic modulus, and compressive strengths of four high-performance concrete mixtures, made with the addition of fly ash, refined ground blast - furnace microslag (microslag) and silica fume are studied. The concrete mixtures were determined based on the dispersion testing results. The study indicates that the elastic modulus at 28 and 91 days, and compressive strengths of the concretes are improved a lot when fly ash and microslag by 25 percent by weight of cement are added into the mixtures individually. The improvement is especially evident when silica fume by 5 percent and fly ash by 25 percent by weight of cement are added together into the mixture, while the fresh concrete mixture keeps a good workability. Through the analysis of chemically combined water ratios of the four mixtures at various hydration ages, it is found that the addition of all these mineral mixtures are beneficial to the hydration process, especially, at later stages, which might be one of the reasons for the improvement of mechanical properties. (Author abstract) 4 Refs.