We have demonstrated a high-average-power,high-repetition-rate optical terahertz(THz)source based on difference frequency generation(DFG)in the GaSe crystal by using a near-degenerate 2μm intracavity KTP optical para...We have demonstrated a high-average-power,high-repetition-rate optical terahertz(THz)source based on difference frequency generation(DFG)in the GaSe crystal by using a near-degenerate 2μm intracavity KTP optical parametric oscillator as the pump source.The power of the 2μm dual-wavelength laser was up to 12.33 W with continuous tuning ranges of 1988.0–2196.2 nm/2278.4–2065.6 nm for two waves.Different GaSe cystal lengths have been experimentally investigated for the DFG THz source in order to optimize the THz output power,which was in good agreement with the theoretical analysis.Based on an 8 mm long GaSe crystal,the THz wave was continuously tuned from 0.21 to 3 THz.The maximum THz average power of 1.66μW was obtained at repetition rate of 10 kHz under 1.48 THz.The single pulse energy amounted to 166 pJ and the conversion efficiency from 2 μm laser to THz output was 1.68×10^(-6).The signal-to-noise ratio of the detected THz voltage was 23 dB.The acceptance angle of DFG in the GaSe crystal was measured to be 0.16°.展开更多
We successfully obtain a high-average-power high-stability Q-switched green laser based on diode-side-pumped composite ceramic Nd:YAG in a straight piano-concave cavity. The temperature distribution in composite cera...We successfully obtain a high-average-power high-stability Q-switched green laser based on diode-side-pumped composite ceramic Nd:YAG in a straight piano-concave cavity. The temperature distribution in composite ceramic Nd:YAG crystal is numerically analyzed and compared with that of conventional Nd:YAG crystal. By using a composite ceramic Nd:YAG rod and a type-II high gray track resistance KTP (HGTR-KTP) crystal, a green laser with an average output power of 165 W is obtained at a repetition rate of 25 kHz, with a diode-to-green optical conversion of 14.68%, and a pulse width of 162 ns. To the best of our knowledge, both the output power and optical-to-optical efficiency are the highest values for green laser systems with intracavity frequency doubling of this novel composite ceramic Nd:YAG laser to date. The power fluctuation at around 160 W is lower than 0.3% in 2.5 hours.展开更多
Using cryogenic laser technology, it is now possible to design and demonstrate lasers that have concomitant high average and peak powers, with near-diffraction-limited beam quality. We refer to these new laser systems...Using cryogenic laser technology, it is now possible to design and demonstrate lasers that have concomitant high average and peak powers, with near-diffraction-limited beam quality. We refer to these new laser systems as HAPP lasers. In this paper, we review important laser crystal materials properties at cryogenic temperature, with an emphasis on Yb lasers, and discuss the important design considerations, including the laser-induced damage threshold, nonlinear effects and thermal effects. A comprehensive model is presented to describe diode pulsed pumping with arbitrary duration and repetition rate, and is used with the Frantz–Nodvik equation to describe, to first order, the performance of HAPP laser systems. A computer code with representative results is also described.展开更多
A fully automatic fail-safe beam shaping system based on a liquid crystal on a silicon spatial light modulator has been implemented in the high-energy kilowatt-average-power nanosecond laser system Bivoj.The shaping s...A fully automatic fail-safe beam shaping system based on a liquid crystal on a silicon spatial light modulator has been implemented in the high-energy kilowatt-average-power nanosecond laser system Bivoj.The shaping system corrects for gain nonuniformity and wavefront aberrations of the front-end of the system.The beam intensity profile and the wavefront at the output of the front-end were successfully improved by shaping.The beam homogeneity defined by the beam quality parameters was improved two to three times.The root-mean-square value of the wavefront was improved more than 10 times.Consequently,the shaped beam from the second preamplifier led to improvement of the beam profile at the output of the first main cryo-amplifier.The shaping system is also capable of creating nonordinary beam shapes,imprinting cross-references into the beam,or masking certain parts of the beam.展开更多
基金National Basic Research Program of China(973)(2014CB339802,2015CB755403)National key research and development projects(2016YFC0101001)+5 种基金National Key Technology R&D Program of China(2014BAI04B05,2015BAI01B01)National Natural Science Foundation of China(NSFC)(61107086,61471257,81402067)Natural Science Foundation of Tianjin City(14JCQNJC02200)Postdoctoral Science Foundation of Chongqing(Xm2016021)Joint Incubation Project of Southwest Hospital(SWH2016LHJC-04,SWH2016LHJC-01)Science and Technology Support Program of Tianjin(13ZCZDSF02300)
文摘We have demonstrated a high-average-power,high-repetition-rate optical terahertz(THz)source based on difference frequency generation(DFG)in the GaSe crystal by using a near-degenerate 2μm intracavity KTP optical parametric oscillator as the pump source.The power of the 2μm dual-wavelength laser was up to 12.33 W with continuous tuning ranges of 1988.0–2196.2 nm/2278.4–2065.6 nm for two waves.Different GaSe cystal lengths have been experimentally investigated for the DFG THz source in order to optimize the THz output power,which was in good agreement with the theoretical analysis.Based on an 8 mm long GaSe crystal,the THz wave was continuously tuned from 0.21 to 3 THz.The maximum THz average power of 1.66μW was obtained at repetition rate of 10 kHz under 1.48 THz.The single pulse energy amounted to 166 pJ and the conversion efficiency from 2 μm laser to THz output was 1.68×10^(-6).The signal-to-noise ratio of the detected THz voltage was 23 dB.The acceptance angle of DFG in the GaSe crystal was measured to be 0.16°.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61107086, 61172010, and 61101058)the Science and Technology Committee of Tianjin, China (Grant No. 11JCYBJC01100)the National High Technology Research and Development Program of China (Grant No. 2011AA010205)
文摘We successfully obtain a high-average-power high-stability Q-switched green laser based on diode-side-pumped composite ceramic Nd:YAG in a straight piano-concave cavity. The temperature distribution in composite ceramic Nd:YAG crystal is numerically analyzed and compared with that of conventional Nd:YAG crystal. By using a composite ceramic Nd:YAG rod and a type-II high gray track resistance KTP (HGTR-KTP) crystal, a green laser with an average output power of 165 W is obtained at a repetition rate of 25 kHz, with a diode-to-green optical conversion of 14.68%, and a pulse width of 162 ns. To the best of our knowledge, both the output power and optical-to-optical efficiency are the highest values for green laser systems with intracavity frequency doubling of this novel composite ceramic Nd:YAG laser to date. The power fluctuation at around 160 W is lower than 0.3% in 2.5 hours.
文摘Using cryogenic laser technology, it is now possible to design and demonstrate lasers that have concomitant high average and peak powers, with near-diffraction-limited beam quality. We refer to these new laser systems as HAPP lasers. In this paper, we review important laser crystal materials properties at cryogenic temperature, with an emphasis on Yb lasers, and discuss the important design considerations, including the laser-induced damage threshold, nonlinear effects and thermal effects. A comprehensive model is presented to describe diode pulsed pumping with arbitrary duration and repetition rate, and is used with the Frantz–Nodvik equation to describe, to first order, the performance of HAPP laser systems. A computer code with representative results is also described.
文摘A fully automatic fail-safe beam shaping system based on a liquid crystal on a silicon spatial light modulator has been implemented in the high-energy kilowatt-average-power nanosecond laser system Bivoj.The shaping system corrects for gain nonuniformity and wavefront aberrations of the front-end of the system.The beam intensity profile and the wavefront at the output of the front-end were successfully improved by shaping.The beam homogeneity defined by the beam quality parameters was improved two to three times.The root-mean-square value of the wavefront was improved more than 10 times.Consequently,the shaped beam from the second preamplifier led to improvement of the beam profile at the output of the first main cryo-amplifier.The shaping system is also capable of creating nonordinary beam shapes,imprinting cross-references into the beam,or masking certain parts of the beam.