Wood-plastic composite is an environmentally friendly material,due to its use of recycled thermoplastics and plant fibers.However,its surface lacks attractive aesthetic qualities.In this paper,a method of decorating w...Wood-plastic composite is an environmentally friendly material,due to its use of recycled thermoplastics and plant fibers.However,its surface lacks attractive aesthetic qualities.In this paper,a method of decorating wood fiber/high-density polyethylene(WF/HDPE)without adding adhesive was explored.Canvas or polyester fabrics were selected as the surface decoration materials.The influence of hot-pressing temperature and WF/HDPE ratio on the adhesion was studied.The surface bonding strength,water resistance,and surface color were evaluated,and observation within the infrared spectrum and under scanning electron microscopy was used to analyze the bonding process.The results showed that the fabric and WF/HDPE substrate could be closely laminated together depending on the HDPE layer accumulated on the WF/HDPE surface.The molten HDPE matrix penetrates canvas more easily than polyester fabric,and the canvasveneered composite shows a greater bonding strength than does the polyester fabric-veneered composite.A higher proportion of the thermoplastic component in the substrate improved the bonding.When the hot-pressing temperature exceeded 160°C,the fabric-veneered WF/HDPE panels had greater water resistance,although the canvas fabric changed more obviously in terms of fiber shape and color,compared with the polyester fabric.For the canvas fabric,140°C–160°C was a suitable hot-pressing temperature,whereas 160°C–180°C was more suitable for polyester fabric.The proportion of the thermoplastic component in the composite should be not less than 30%to achieve adequate bonding strength.展开更多
The carbon nanotubes (CNTs) periodically decorated by high-density polyethylene (HDPE) composites with nanohybrid shish kebabs (NHSK) structures were prepared by CNTs-initiated solution crystalli-zation. The disc-shap...The carbon nanotubes (CNTs) periodically decorated by high-density polyethylene (HDPE) composites with nanohybrid shish kebabs (NHSK) structures were prepared by CNTs-initiated solution crystalli-zation. The disc-shaped HDPE crystalline lamellae were periodically located on the surface of CNTs in the direction perpendicular to the nanotube axis. Observations from scanning electron microscopy and transmission electron microscopy showed that with the increasing of crystallization temperature, the lateral dimension of the lamellae was decreased and the distance between two neighboring lamellae was increased. However, the thickness of the lamellae did not vary with the crystallization temperature. The formation mechanism of the NHSK structures was also explained. The one-dimensional structure and the ultra-high curved surface of CNTs lead to strong geometry confinement, which plays a main role in the formation of the NHSKs.展开更多
基金supported by the National Natural Science Foundation of China[31670573]the Innovation Training Program of Northeast Forestry University[201810225398].
文摘Wood-plastic composite is an environmentally friendly material,due to its use of recycled thermoplastics and plant fibers.However,its surface lacks attractive aesthetic qualities.In this paper,a method of decorating wood fiber/high-density polyethylene(WF/HDPE)without adding adhesive was explored.Canvas or polyester fabrics were selected as the surface decoration materials.The influence of hot-pressing temperature and WF/HDPE ratio on the adhesion was studied.The surface bonding strength,water resistance,and surface color were evaluated,and observation within the infrared spectrum and under scanning electron microscopy was used to analyze the bonding process.The results showed that the fabric and WF/HDPE substrate could be closely laminated together depending on the HDPE layer accumulated on the WF/HDPE surface.The molten HDPE matrix penetrates canvas more easily than polyester fabric,and the canvasveneered composite shows a greater bonding strength than does the polyester fabric-veneered composite.A higher proportion of the thermoplastic component in the substrate improved the bonding.When the hot-pressing temperature exceeded 160°C,the fabric-veneered WF/HDPE panels had greater water resistance,although the canvas fabric changed more obviously in terms of fiber shape and color,compared with the polyester fabric.For the canvas fabric,140°C–160°C was a suitable hot-pressing temperature,whereas 160°C–180°C was more suitable for polyester fabric.The proportion of the thermoplastic component in the composite should be not less than 30%to achieve adequate bonding strength.
基金Supported by the National Natural Science Foundation of China (Grant No. 50772031)the Chinese Program for New Century Excellent Talents in University (Grant No. NCET-05-0678)+1 种基金the Scientific Research Foundation for the Returned Overseas Chinese Scholars of Ministry of Education, Hubei Provincial Department of Education (Grant No. Q200610005)Hubei Provincial Science & Technology Department (Grant No. 2006ABA020)
文摘The carbon nanotubes (CNTs) periodically decorated by high-density polyethylene (HDPE) composites with nanohybrid shish kebabs (NHSK) structures were prepared by CNTs-initiated solution crystalli-zation. The disc-shaped HDPE crystalline lamellae were periodically located on the surface of CNTs in the direction perpendicular to the nanotube axis. Observations from scanning electron microscopy and transmission electron microscopy showed that with the increasing of crystallization temperature, the lateral dimension of the lamellae was decreased and the distance between two neighboring lamellae was increased. However, the thickness of the lamellae did not vary with the crystallization temperature. The formation mechanism of the NHSK structures was also explained. The one-dimensional structure and the ultra-high curved surface of CNTs lead to strong geometry confinement, which plays a main role in the formation of the NHSKs.