Benefiting from the abrupt phase changes within subwavelength thicknesses,metasurfaces have been widely applied for lightweight and compact optical systems.Simultaneous broadband and high-efficiency characteristics ar...Benefiting from the abrupt phase changes within subwavelength thicknesses,metasurfaces have been widely applied for lightweight and compact optical systems.Simultaneous broadband and high-efficiency characteristics are highly attractive for the practical implementation of metasurfaces.However,current metasurface devices mostly adopt discrete micro/nano structures,which rarely realize both merits simultaneously.In this paper,dielectric metasurfaces composed of quasi-continuous nanostrips are proposed to overcome this limitation.Via quasi-continuous nanostrips metasurface,a normal focusing metalens and a superoscillatory lens overcoming the diffraction limit are designed and experimentally demonstrated.The quasi-continuous metadevices can operate in a broadband wavelength ranging from 450 nm to 1000nm and keep a high power efficiency.The average efficiency of the fabricated metalens reaches 54.24%,showing a significant improvement compared to the previously reported metalenses with the same thickness.The proposed methodology can be easily extended to design other metadevices with the advantages of broadband and high-efficiency in practical optical systems.展开更多
Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery a...Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC.展开更多
Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low re...Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc(Zn) metal. However,several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries(AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented.展开更多
To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put fo...To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put forward.The carbonation effect of modified recycled coarse aggregate with three different carbonation methods was evaluated,and water absorption,apparent density and crush index of modified recycled coarse aggregate were measured.Combined with XRD,SEM,and MIP microscopic analysis,the high-efficiency carbonation strengthening mechanism of modified recycled coarse aggregate was revealed.The experimental results show that,compared with the non-carbonated recycled coarse aggregate,the physical and microscopic properties of carbonated recycled coarse aggregate are improved.The method of carbonation with nano-SiO_(2) pre-soaking can realize the high-efficiency carbonation of recycled coarse aggregate,for modified recycled coarse aggregate with the method,water absorption is reduced by 23.03%,porosity is reduced by 44.06%,and the average pore diameter is 21.82 nm.The high-efficiency carbonation strengthening mechanism show that the pre-socked nano-SiO_(2) is bound to the hydration product Ca(OH)_(2) of the old mortar with nano-scale C-S-H,which can improve the CO_(2) absorption rate,accelerate the carbonation reaction,generate more stable CaCO_(3) and nano-scale silica gel,and bond to the dense three-dimensional network structure to realize the bidirectional enhancement of nano-materials and pressurized carbonation.It is concluded that the method of carbonation with nano-SiO_(2) pre-soaking is a novel high-efficiency carbonation modification of recycled coarse aggregate.展开更多
Gypsum sludge,a hazardous waste generated by the non-ferrous smelting industry,presents a significant challenge for disposal and utilization.To investigate the feasibility of substituting gypsum sludge for limestone a...Gypsum sludge,a hazardous waste generated by the non-ferrous smelting industry,presents a significant challenge for disposal and utilization.To investigate the feasibility of substituting gypsum sludge for limestone as a flux for smelting,the effects of calcium sulfate(CaSO_(4))and smelting conditions on oxygen-rich smelting of lead concentrate were studied.The interaction between CaSO_(4)and sulfides facilitates the conversion of CaSO_(4)into CaO,which is crucial for slag formation.The order of the influence of sulfide minerals on the conversion of CaSO_(4)is pyrite>sphalerite>galena.When using gypsum sludge exclusively as the calcium source,under optimal conditions with a CaO/SiO_(2)mass ratio of 0.8,an FeO/SiO_(2)mass ratio of 1.2,a melting temperature of 1150℃,an oxygen flow rate of 1.3 L/min,the recovery rates of Pb and Zn in the lead-rich slag reached 85.01%and 95.69%,respectively,with a sulfur content of 2.65 wt%.The As content in the smelting slag obtained by reduction smelting was 0.02 wt%.Resource utilization of gypsum sludge in lead smelting is a feasible method.展开更多
Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and th...Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and the exploration of appropriate dietary glucose release kinetics may promote the dynamic balance of dietary glucose and amino acid supplies.However,research on the effects of diets with different glucose release kinetic profiles on amino acid absorption and portal amino acid appearance in piglets is limited.This study aimed to investigate the effects of the kinetic pattern of dietary glucose release on nitrogen utilization,the portal amino acid profile,and nutrient transporter expression in intestinal enterocytes in piglets.Methods Sixty-four barrows(15.00±1.12 kg)were randomly allotted to 4 groups and fed diets formulated with starch from corn,corn/barley,corn/sorghum,or corn/cassava combinations(diets were coded A,B,C,or D respectively).Protein retention,the concentrations of portal amino acid and glucose,and the relative expression of amino acid and glucose transporter m RNAs were investigated.In vitro digestion was used to compare the dietary glucose release profiles.Results Four piglet diets with different glucose release kinetics were constructed by adjusting starch sources.The in vivo appearance dynamics of portal glucose were consistent with those of in vitro dietary glucose release kinetics.Total nitrogen excretion was reduced in the piglets in group B,while apparent nitrogen digestibility and nitrogen retention increased(P<0.05).Regardless of the time(2 h or 4 h after morning feeding),the portal total free amino acids content and contents of some individual amino acids(Thr,Glu,Gly,Ala,and Ile)of the piglets in group B were significantly higher than those in groups A,C,and D(P<0.05).Cluster analysis showed that different glucose release kinetic patterns resulted in different portal amino acid patterns in piglets,which decreased gradually with the extension of feeding time.The portal His/Phe,Pro/Glu,Leu/Val,Lys/Met,Tyr/Ile and Ala/Gly appeared higher similarity among the diet treatments.In the anterior jejunum,the glucose transporter SGLT1 was significantly positively correlated with the amino acid transporters B0AT1,EAAC1,and CAT1.Conclusions Rational allocation of starch resources could regulate dietary glucose release kinetics.In the present study,group B(corn/barley)diet exhibited a better glucose release kinetic pattern than the other groups,which could affect the portal amino acid contents and patterns by regulating the expression of amino acid transporters in the small intestine,thereby promoting nitrogen deposition in the body,and improving the utilization efficiency of dietary nitrogen.展开更多
Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone ...Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively.展开更多
Iron-nitrogen-carbon(Fe-N-C)catalysts for the oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs)have seriously been hindered by their poor ORR performance of Fe-N-C due to the low active site...Iron-nitrogen-carbon(Fe-N-C)catalysts for the oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs)have seriously been hindered by their poor ORR performance of Fe-N-C due to the low active site density(SD)and site utilization.Herein,we reported a melamine-assisted vapor deposition approach to overcome these hindrances.The melamine not only compensates for the loss of nitrogen caused by high-temperature pyrolysis but also effectively etches the carbon substrate,increasing the external surface area and mesoporous porosity of the carbon substrate.These can provide more useful area for subsequent vapor deposition on active sites.The prepared 0.20Mela-FeNC catalyst shows a fourfold higher SD value and site utilization than the FeNC without the treatment of melamine.As a result,0.20Mela-FeNC catalyst exhibits a high ORR activity with a half-wave potential(E_(1/2))of 0.861 V and 12-fold higher ORR mass activity than the FeNC in acidic media.As the cathode in a H_(2)-O_(2)PEMFCs,0.20Mela-FeNC catalyst demonstrates a high peak power density of 1.30 W cm^(-2),outstripping most of the reported Fe-N-C catalysts.The developed melamine-assisted vapor deposition approach for boosting the SD and utilization of Fe-N-C catalysts offers a new insight into high-performance ORR electrocatalysts.展开更多
Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily s...Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily scalable electrodeposition at room temperature.Combined with a Nafion 117 membrane,the IrO_(x)-integrated electrode with an ultralow loading of 0.075 mg cm^(-2)delivers a high cell efficiency of about 90%,achieving more than 96%catalyst savings and 42-fold higher catalyst utilization compared to commercial catalyst-coated membrane(2 mg cm^(-2)).Additionally,the IrO_(x)electrode demonstrates superior performance,higher catalyst utilization and significantly simplified fabrication with easy scalability compared with the most previously reported anodes.Notably,the remarkable performance could be mainly due to the amorphous phase property,sufficient Ir^(3+)content,and rich surface hydroxide groups in catalysts.Overall,due to the high activity,high cell efficiency,an economical,greatly simplified and easily scalable fabrication process,and ultrahigh material utilization,the IrO_(x)electrode shows great potential to be applied in industry and accelerates the commercialization of PEMECs and renewable energy evolution.展开更多
Recycling graphite anode from spent lithium-ion batteries(SLIBs)is regarded as a crucial approach to promoting sustainable energy storage industry.However,the recycled graphite(RG)generally presents degraded structure...Recycling graphite anode from spent lithium-ion batteries(SLIBs)is regarded as a crucial approach to promoting sustainable energy storage industry.However,the recycled graphite(RG)generally presents degraded structure and performance.Herein,the residual fluoride self-activated effect is proposed for the upgraded utilization of RG.Simple and low-energy water immersion treatment not only widens the interlayer spacing,but also retains appropriate fluoride on the surface of RG.Theoretical analysis and experiments demonstrate that the residual fluoride can optimize Li~+migration and deposition kinetics,resulting in better Li~+intercalation/deintercalation in the interlayer and more stable Li metal plating/stripping on the surface of RG,As a result,the designed LFP||RG full cells achieve ultrahigh reversibility(~100%Coulombic efficiency),high capacity retention(67%after 200 cycles,0.85 N/P ratio),and commendable adaptability(stable cycling without short-circuiting,0.15 N/P ratio).The energy density is improved from 334 Wh kg^(-1)of 1.1 N/P ratio to 367 Wh kg^(-1)of 0.85 N/P ratio(total mass based on cathode and anode).The exploration of RG by residual fluoride self-activated effect achieves upgraded utilization beyond fresh commercial graphite and highlights a new strategy for efficient reuse of SLIBs.展开更多
Introduction: Acquired immunodeficiency syndrome is one of the leading causes of mortality among women of reproductive age and Mother to Child Transmission of Human immunodeficiency virus is still a challenge affectin...Introduction: Acquired immunodeficiency syndrome is one of the leading causes of mortality among women of reproductive age and Mother to Child Transmission of Human immunodeficiency virus is still a challenge affecting many countries. Globally, an estimation of 180,000 children under 15 years acquire the Human immunodeficiency virus every day, and more than 90% of those infections are due to Mother to Child Transmission. The study sought to explore the experiences of mothers on the Elimination of Mother to Child Transmission-HIV services at Mtendere Clinic, Lusaka. Materials and Methods: Qualitative interpretive phenomenology study design was employed using in-depth interviews to collect data from a sample that was selected using purposive sampling technique. Thirteen participants were recruited, and these were HIV-positive mothers at least between the ages of 15 and 49 years and enrolled in the Elimination of Mother To Child Transmission-HIV program. The in-depth interviews were audiotape recorded and transcribed verbatim. Data was analyzed using thematic method. Findings: Three main themes that emerged are;living with HIV, support system and barriers to utilization of Elimination of Mother To Child Transmission-HIV services. Most of the participants expressed having acquired knowledge from the program, and received counselling and support from spouses, family as well as health personnel at Mtendere health facility which culminated into a positive experience and enhanced their uptake of the Elimination of Mother to Child Transmission-HIV services. However, barriers to service utilization were identified and these included fear of stigma, negative attitudes from health workers, long waiting times, lack of support and lack of transport to the health facility. Conclusion: Interventions such as community awareness campaigns on Elimination of Mother To Child Transmission-HIV, male involvement and implementing mother-to-mother peer support strategies in Elimination of Mother To Child Transmission-HIV service utilization should be prioritized so as to alleviate stigma and enhancing a positive experience for these mothers thus reducing on the Mother to Child HIV Transmission burden and mortality rates.展开更多
Green mining and the formation of an effective and efficient development model have become key issues that aggregates enterprises around the world need to solve urgently.On the basis of analyzing the development statu...Green mining and the formation of an effective and efficient development model have become key issues that aggregates enterprises around the world need to solve urgently.On the basis of analyzing the development status of aggregates industry in Xiluodu area,the paper studied the main problems faced in the construction of green aggregates mines at present,and proposed a"three-in-one"ecological,intelligent and efficient green mine construction model for"ecological development","green logistics"and"solid waste recycling"of aggregates.The study has certain theoretical value and practical significance for the construction of green aggregates mine in Xiluodu area.展开更多
Herbal extraction residues(HERs)cause serious environmental pollution and resource waste.In this study,a novel green route was designed for the comprehensive reutilization of all components in HERs,taking Magnolia off...Herbal extraction residues(HERs)cause serious environmental pollution and resource waste.In this study,a novel green route was designed for the comprehensive reutilization of all components in HERs,taking Magnolia officinalis residues(MOR)as an example.The reluctant structure of MOR was first destroyed by alkali pretreatment to release the functional ingredients(magnolol and honokiol)originally remaining in MOR and to make MOR more accessible for hydrolysis.A metal–organic frame material MIL-101(Cr)with a maximum absorption capacity of 255.64 mg g^(-1)was synthesized to absorb the released honokiol and magnolol from the pretreated MOR solutions,and 40 g L^(-1)reducing sugars were obtained with 81.8%enzymatic hydrolysis rate at 10%MOR solid loading.Finally,382 mg L-1β-amyrin was produced from MOR hydrolysates by an engineered yeast strain.In total,1 kg honokiol,8 kg magnolol,and 7.64 kg β-amyrin could produce from 1 ton MOR by this cleaner process with a total economic output of 170,700 RMB.展开更多
Carbon capture,utilization and storage(CCUS)technology is an important means to effectively reduce carbon emissions from fossil energy combustion and industrial processes.With the crisis of climate change,CCUS has att...Carbon capture,utilization and storage(CCUS)technology is an important means to effectively reduce carbon emissions from fossil energy combustion and industrial processes.With the crisis of climate change,CCUS has attracted increasing attention in the world.CCUS technology as developed rapidly in China is technically feasible for large-scale application in various industries.The R&D and demonstration of CCUS in China Petroleum&Chemical Corporation(Sinopec)are summarized,including carbon capture,carbon transport,CO_(2)enhanced energy recovery(including oil,gas,and water,etc.),and comprehensive utilization of CO_(2).Based on the source-sink matching characteristics in China,two CCUS industrialization scenarios are proposed,namely,CO_(2)-EOR,CO_(2)-driven enhanced oil recovery using centralized carbon sinks in East China and CO_(2)-EWR,CO_(2)-driven enhanced water recovery(EWR)using centralized carbon sources from the coal chemical industry in West China.Finally,a CCUS industrialization path from Sinopec's perspective is suggested,using CO_(2)-EOR as the major means and CO_(2)-EWR,CO_(2)-driven enhanced gas recovery(CO_(2)-EGR)and other utilization methods as important supplementary means.展开更多
At present,there is a great demand for building materials in the market,and the market prospect of building materials is relatively considerable.Through studying the composition of river sediment and its resource util...At present,there is a great demand for building materials in the market,and the market prospect of building materials is relatively considerable.Through studying the composition of river sediment and its resource utilization in the field of building materials,this paper expounds the current domestic scholars research on river sediment in building materials,and summarizes the current problems and challenges,so as to provide a reference for the sustainable development of river sediment in the field of building materials.展开更多
Plasma-based processes,particularly in carbon capture and utilization,hold great potential for addressing environmental challenges and advancing a circular carbon economy.While significant progress has been made in un...Plasma-based processes,particularly in carbon capture and utilization,hold great potential for addressing environmental challenges and advancing a circular carbon economy.While significant progress has been made in understanding plasma-induced reactions,plasma-catalyst interactions,and reactor development to enhance energy efficiency and conversion,there remains a notable gap in research concerning overall process development.This review emphasizes the critical need for considerations at the process level,including integration and intensification,to facilitate the industrialization of plasma technology for chemical production.Discussions centered on the development of plasma-based processes are made with a primary focus on CO_(2) conversion,offering insights to guide future work for the transition of the technology from laboratory scale to industrial applications.Identification of current research gaps,especially in upscaling and integrating plasma reactors with other process units,is the key to addressing critical issues.The review further delves into relevant research in process evaluation and assessment,providing methodological insights and highlighting key factors for comprehensive economic and sustainability analyses.Additionally,recent advancements in novel plasma systems are reviewed,presenting unique advantages and innovative concepts that could reshape the future of process development.This review provides essential information for navigating the path forward,ensuring a comprehensive understanding of challenges and opportunities in the development of plasma-based CCU process.展开更多
The machine learning models of multiple linear regression(MLR),support vector regression(SVR),and extreme learning ma-chine(ELM)and the proposed ELM models of online sequential ELM(OS-ELM)and OS-ELM with forgetting me...The machine learning models of multiple linear regression(MLR),support vector regression(SVR),and extreme learning ma-chine(ELM)and the proposed ELM models of online sequential ELM(OS-ELM)and OS-ELM with forgetting mechanism(FOS-ELM)are applied in the prediction of the lime utilization ratio of dephosphorization in the basic oxygen furnace steelmaking process.The ELM model exhibites the best performance compared with the models of MLR and SVR.OS-ELM and FOS-ELM are applied for sequential learning and model updating.The optimal number of samples in validity term of the FOS-ELM model is determined to be 1500,with the smallest population mean absolute relative error(MARE)value of 0.058226 for the population.The variable importance analysis reveals lime weight,initial P content,and hot metal weight as the most important variables for the lime utilization ratio.The lime utilization ratio increases with the decrease in lime weight and the increases in the initial P content and hot metal weight.A prediction system based on FOS-ELM is applied in actual industrial production for one month.The hit ratios of the predicted lime utilization ratio in the error ranges of±1%,±3%,and±5%are 61.16%,90.63%,and 94.11%,respectively.The coefficient of determination,MARE,and root mean square error are 0.8670,0.06823,and 1.4265,respectively.The system exhibits desirable performance for applications in actual industrial pro-duction.展开更多
A molten salt reactor(MSR)has outstanding features considering the application of thorium fuel,inherent safety,sustainability,and resistance to proliferation.However,fissile material^(233)U is significantly rare at th...A molten salt reactor(MSR)has outstanding features considering the application of thorium fuel,inherent safety,sustainability,and resistance to proliferation.However,fissile material^(233)U is significantly rare at the current stage,thus it is difficult for MSR to achieve a pure thorium-uranium fuel cycle.Therefore,using plutonium or enriched uranium as the initial fuel for MSR is more practical.In this study,we aim to verify the feasibility of a small modular MSR that utilizes plutonium as the starting fuel(SM-MSR-Pu),and highlight its advantages and disadvantages.First,the structural design and fuel management scheme of the SM-MSR-Pu were presented.Second,the neutronic characteristics,such as the graphite-irradiation lifetime,burn-up performance,and coefficient of temperature reactivity were calculated to analyze the physical characteristics of the SM-MSR-Pu.The results indicate that plutonium is a feasible and advantageous starting fuel for a SM-MSR;however,there are certain shortcomings that need to be solved.In a 250 MWth SM-MSR-Pu,approximately 288.64 kg^(233)U of plutonium with a purity of greater than 90% is produced while 978.00 kg is burned every ten years.The temperature reactivity coefficient decreases from -4.0 to -6.5 pcm K^(-1) over the 50-year operating time,which ensures a long-term safe operation.However,the amount of plutonium and accumulation of minor actinides(MAs)would increase as the burn-up time increases,and the annual production and purity of^(233)U will decrease.To achieve an optimal burn-up performance,setting the entire operation time to 30 years is advisable.Regardless,more than 3600 kg of plutonium eventually accumulate in the core.Further research is required to effectively utilize this accumulated plutonium.展开更多
In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-g...In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-gravity factor,gas/liquid ratio,and initial BaCl2concentration on the absorption rate and amount of CO_(2)and the preparation of BaCO_(3)are investigated.The results reveal that the absorption rate and amount of CO_(2)follow the order of ethyl alkanolamine(MEA)>diethanol amine(DEA)>N-methyldiethanolamine(MDEA),and thus MEA is the most effective absorbent for CO_(2)absorption.The absorption rate and amount of CO_(2)under high gravity are higher than that under normal gravity.Notably,the absorption rate at 75 min under high gravity is approximately 2 times that under normal gravity.This is because the centrifugal force resulting from the high-speed rotation of the packing can greatly increase gas-liquid mass transfer and micromixing.The particle size of BaCO_(3)prepared in the rotating packed bed is in the range of 57.2—89 nm,which is much smaller than that prepared in the bubbling reactor(>100.3 nm),and it also has higher purity(99.6%)and larger specific surface area(14.119 m^(2)·g^(-1)).It is concluded that the high-gravity technology has the potential to increase the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3).This study provides new insights into carbon emissions reduction and carbon utilization.展开更多
Dissolved oxygen(DO)and apparent oxygen utilization(AOU)are essential parameters for evaluating the impact of climate change on marine ecosystems.In this study,we utilized data on DO and AOU collected from the Amundse...Dissolved oxygen(DO)and apparent oxygen utilization(AOU)are essential parameters for evaluating the impact of climate change on marine ecosystems.In this study,we utilized data on DO and AOU collected from the Amundsen Sea(western Antarctic)and the Cosmonaut Sea(eastern Antarctic)during the 38th Chinese National Antarctic Research Expedition,along with chlorophyll a(Chl a)data,to analyze the impact of primary production and the spatial distribution and structural features of water masses in these regions.The findings show that the standard deviation range of parallel DO samples is between 0.1 and 3.9μmol·L^(-1),meeting the precision criteria of the survey method.AOU values lower than 0.0μmol·L^(-1) were commonly observed in the surface waters of both regions,with the highest incidence in the polynya of Amundsen Sea,indicating a strong influence of high primary production.The Cosmonaut Sea exhibited the highest AOU values(higher than 160.0μmol·L^(-1))in the 75-500 m layer,while AOU value in the Amundsen Sea did not exceed 160.0μmol·L^(-1),suggesting potential upwelling of Circumpolar Deep Water to 100 m in the Cosmonaut Sea with minimal changes in its properties,whereas significant changes were noted in the properties of upwelling modified Circumpolar Deep Water in the Amundsen Sea.AOU values lower than 125.0μmol·L^(-1)were detected in the near-bottom waters of the Cosmonaut Sea,indicating the presence of Antarctic Bottom Water.展开更多
基金the financial support by National Natural Science Foundation of China under contract No.61905031,61905073National Key R&D Program of China under contract No.2020YFC1522900Natural Science Foundation of Chongqing under contract No.CSTB2023NSCQMSX0992。
文摘Benefiting from the abrupt phase changes within subwavelength thicknesses,metasurfaces have been widely applied for lightweight and compact optical systems.Simultaneous broadband and high-efficiency characteristics are highly attractive for the practical implementation of metasurfaces.However,current metasurface devices mostly adopt discrete micro/nano structures,which rarely realize both merits simultaneously.In this paper,dielectric metasurfaces composed of quasi-continuous nanostrips are proposed to overcome this limitation.Via quasi-continuous nanostrips metasurface,a normal focusing metalens and a superoscillatory lens overcoming the diffraction limit are designed and experimentally demonstrated.The quasi-continuous metadevices can operate in a broadband wavelength ranging from 450 nm to 1000nm and keep a high power efficiency.The average efficiency of the fabricated metalens reaches 54.24%,showing a significant improvement compared to the previously reported metalenses with the same thickness.The proposed methodology can be easily extended to design other metadevices with the advantages of broadband and high-efficiency in practical optical systems.
基金the National Natural Science Foundation of China(No.52374279)the Natural Science Foundation of Shaanxi Province(No.2023-YBGY-055).
文摘Coal gasification fine slag(FS)is a typical solid waste generated in coal gasification.Its current disposal methods of stockpil-ing and landfilling have caused serious soil and ecological hazards.Separation recovery and the high-value utilization of residual carbon(RC)in FS are the keys to realizing the win-win situation of the coal chemical industry in terms of economic and environmental benefits.The structural properties,such as pore,surface functional group,and microcrystalline structures,of RC in FS(FS-RC)not only affect the flotation recovery efficiency of FS-RC but also form the basis for the high-value utilization of FS-RC.In this paper,the characteristics of FS-RC in terms of pore structure,surface functional groups,and microcrystalline structure are sorted out in accordance with gasification type and FS particle size.The reasons for the formation of the special structural properties of FS-RC are analyzed,and their influence on the flotation separation and high-value utilization of FS-RC is summarized.Separation methods based on the pore structural characterist-ics of FS-RC,such as ultrasonic pretreatment-pore-blocking flotation and pore breaking-flocculation flotation,are proposed to be the key development technologies for improving FS-RC recovery in the future.The design of low-cost,low-dose collectors containing polar bonds based on the surface and microcrystalline structures of FS-RC is proposed to be an important breakthrough point for strengthening the flotation efficiency of FS-RC in the future.The high-value utilization of FS should be based on the physicochemical structural proper-ties of FS-RC and should focus on the environmental impact of hazardous elements and the recyclability of chemical waste liquid to es-tablish an environmentally friendly utilization method.This review is of great theoretical importance for the comprehensive understand-ing of the unique structural properties of FS-RC,the breakthrough of the technological bottleneck in the efficient flotation separation of FS,and the expansion of the field of the high value-added utilization of FS-RC.
基金the financial support from the National Natural Science Foundation of China (Grant Nos. 52201201, 52372171)the State Key Lab of Advanced Metals and Materials (Grant No. 2022Z-11)+1 种基金the Fundamental Research Funds for the Central Universities (Grant No. 00007747, 06500205)the Initiative Postdocs Supporting Program (Grant No. BX20190002)。
文摘Aqueous zinc metal batteries(AZMBs)are promising candidates for next-generation energy storage due to the excellent safety, environmental friendliness, natural abundance, high theoretical specific capacity, and low redox potential of zinc(Zn) metal. However,several issues such as dendrite formation, hydrogen evolution, corrosion, and passivation of Zn metal anodes cause irreversible loss of the active materials. To solve these issues, researchers often use large amounts of excess Zn to ensure a continuous supply of active materials for Zn anodes. This leads to the ultralow utilization of Zn anodes and squanders the high energy density of AZMBs. Herein, the design strategies for AZMBs with high Zn utilization are discussed in depth, from utilizing thinner Zn foils to constructing anode-free structures with theoretical Zn utilization of 100%, which provides comprehensive guidelines for further research. Representative methods for calculating the depth of discharge of Zn anodes with different structures are first summarized. The reasonable modification strategies of Zn foil anodes, current collectors with pre-deposited Zn, and anode-free aqueous Zn metal batteries(AF-AZMBs) to improve Zn utilization are then detailed. In particular, the working mechanism of AF-AZMBs is systematically introduced. Finally, the challenges and perspectives for constructing high-utilization Zn anodes are presented.
基金Funded by Joint Funds of the National Natural Science Foundation of China(No.U1904188)the Jiangxi Provincial Department of Education Science and Technology Project(Nos.GJJ171079,GJJ181023,and GJJ181022)。
文摘To solve the problem of only surface carbonation and realize high-efficiency carbonation of recycled coarse aggregate,the method of carbonated recycled coarse aggregate with nano materials pre-soaking was first put forward.The carbonation effect of modified recycled coarse aggregate with three different carbonation methods was evaluated,and water absorption,apparent density and crush index of modified recycled coarse aggregate were measured.Combined with XRD,SEM,and MIP microscopic analysis,the high-efficiency carbonation strengthening mechanism of modified recycled coarse aggregate was revealed.The experimental results show that,compared with the non-carbonated recycled coarse aggregate,the physical and microscopic properties of carbonated recycled coarse aggregate are improved.The method of carbonation with nano-SiO_(2) pre-soaking can realize the high-efficiency carbonation of recycled coarse aggregate,for modified recycled coarse aggregate with the method,water absorption is reduced by 23.03%,porosity is reduced by 44.06%,and the average pore diameter is 21.82 nm.The high-efficiency carbonation strengthening mechanism show that the pre-socked nano-SiO_(2) is bound to the hydration product Ca(OH)_(2) of the old mortar with nano-scale C-S-H,which can improve the CO_(2) absorption rate,accelerate the carbonation reaction,generate more stable CaCO_(3) and nano-scale silica gel,and bond to the dense three-dimensional network structure to realize the bidirectional enhancement of nano-materials and pressurized carbonation.It is concluded that the method of carbonation with nano-SiO_(2) pre-soaking is a novel high-efficiency carbonation modification of recycled coarse aggregate.
基金Project(2020YFC1909203)supported by the National Key R&D Project of ChinaProjects(51974364,52074355,51904339)supported by the National Natural Science Foundation of China。
文摘Gypsum sludge,a hazardous waste generated by the non-ferrous smelting industry,presents a significant challenge for disposal and utilization.To investigate the feasibility of substituting gypsum sludge for limestone as a flux for smelting,the effects of calcium sulfate(CaSO_(4))and smelting conditions on oxygen-rich smelting of lead concentrate were studied.The interaction between CaSO_(4)and sulfides facilitates the conversion of CaSO_(4)into CaO,which is crucial for slag formation.The order of the influence of sulfide minerals on the conversion of CaSO_(4)is pyrite>sphalerite>galena.When using gypsum sludge exclusively as the calcium source,under optimal conditions with a CaO/SiO_(2)mass ratio of 0.8,an FeO/SiO_(2)mass ratio of 1.2,a melting temperature of 1150℃,an oxygen flow rate of 1.3 L/min,the recovery rates of Pb and Zn in the lead-rich slag reached 85.01%and 95.69%,respectively,with a sulfur content of 2.65 wt%.The As content in the smelting slag obtained by reduction smelting was 0.02 wt%.Resource utilization of gypsum sludge in lead smelting is a feasible method.
基金partially supported by the National Key Research and Development Program of China(2021YFD1300201)Jilin Province Key Research and Development Program of China(20220202044NC)。
文摘Background Promoting the synchronization of glucose and amino acid release in the digestive tract of pigs could effectively improve dietary nitrogen utilization.The rational allocation of dietary starch sources and the exploration of appropriate dietary glucose release kinetics may promote the dynamic balance of dietary glucose and amino acid supplies.However,research on the effects of diets with different glucose release kinetic profiles on amino acid absorption and portal amino acid appearance in piglets is limited.This study aimed to investigate the effects of the kinetic pattern of dietary glucose release on nitrogen utilization,the portal amino acid profile,and nutrient transporter expression in intestinal enterocytes in piglets.Methods Sixty-four barrows(15.00±1.12 kg)were randomly allotted to 4 groups and fed diets formulated with starch from corn,corn/barley,corn/sorghum,or corn/cassava combinations(diets were coded A,B,C,or D respectively).Protein retention,the concentrations of portal amino acid and glucose,and the relative expression of amino acid and glucose transporter m RNAs were investigated.In vitro digestion was used to compare the dietary glucose release profiles.Results Four piglet diets with different glucose release kinetics were constructed by adjusting starch sources.The in vivo appearance dynamics of portal glucose were consistent with those of in vitro dietary glucose release kinetics.Total nitrogen excretion was reduced in the piglets in group B,while apparent nitrogen digestibility and nitrogen retention increased(P<0.05).Regardless of the time(2 h or 4 h after morning feeding),the portal total free amino acids content and contents of some individual amino acids(Thr,Glu,Gly,Ala,and Ile)of the piglets in group B were significantly higher than those in groups A,C,and D(P<0.05).Cluster analysis showed that different glucose release kinetic patterns resulted in different portal amino acid patterns in piglets,which decreased gradually with the extension of feeding time.The portal His/Phe,Pro/Glu,Leu/Val,Lys/Met,Tyr/Ile and Ala/Gly appeared higher similarity among the diet treatments.In the anterior jejunum,the glucose transporter SGLT1 was significantly positively correlated with the amino acid transporters B0AT1,EAAC1,and CAT1.Conclusions Rational allocation of starch resources could regulate dietary glucose release kinetics.In the present study,group B(corn/barley)diet exhibited a better glucose release kinetic pattern than the other groups,which could affect the portal amino acid contents and patterns by regulating the expression of amino acid transporters in the small intestine,thereby promoting nitrogen deposition in the body,and improving the utilization efficiency of dietary nitrogen.
基金supported by the the Guizhou Provincial Excellent Young Talents Project of Science and Technology,China(YQK(2023)002)the Guizhou Provincial Science and Technology Projects,China((2022)Key 008)+2 种基金the Guizhou Provincial Science and Technology Support Plan,China((2022)Key 026)the Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province,China((2023)008)the Key Laboratory of Functional Agriculture of Guizhou Provincial Higher Education Institutions,China((2023)007)。
文摘Low-affinity nitrate transporter genes have been identified in subfamilies 4-8 of the rice nitrate transporter 1(NRT1)/peptide transporter family(NPF),but the OsNPF3 subfamily responsible for nitrate and phytohormone transport and rice growth and development remains unknown.In this study,we described OsNPF3.1 as an essential nitrate and phytohormone transporter gene for rice tillering and nitrogen utilization efficiency(NUtE).OsNPF3.1 possesses four major haplotypes of its promoter sequence in 517 cultivars,and its expression is positively associated with tiller number.Its expression was higher in the basal part,culm,and leaf blade than in other parts of the plant,and was strongly induced by nitrate,abscisic acid(ABA)and gibberellin 3(GA_3)in the root and shoot of rice.Electrophysiological experiments demonstrated that OsNPF3.1 is a pH-dependent low-affinity nitrate transporter,with rice protoplast uptake assays showing it to be an ABA and GA_3 transporter.OsNPF3.1 overexpression significantly promoted ABA accumulation in the roots and GA accumulation in the basal part of the plant which inhibited axillary bud outgrowth and rice tillering,especially at high nitrate concentrations.The NUtE of OsNPF3.1-overexpressing plants was enhanced under low and medium nitrate concentrations,whereas the NUtE of OsNPF3.1 clustered regularly interspaced short palindromic repeats(CRISPR)plants was increased under high nitrate concentrations.The results indicate that OsNPF3.1 transports nitrate and phytohormones in different rice tissues under different nitrate concentrations.The altered OsNPF3.1 expression improves NUtE in the OsNPF3.1-overexpressing and CRISPR lines at low and high nitrate concentrations,respectively.
基金granted by the National Natural Science Foundation of China(22172134,22288102)the National Key Research and Development Program of China(2017YFA0206500)
文摘Iron-nitrogen-carbon(Fe-N-C)catalysts for the oxygen reduction reaction(ORR)in proton exchange membrane fuel cells(PEMFCs)have seriously been hindered by their poor ORR performance of Fe-N-C due to the low active site density(SD)and site utilization.Herein,we reported a melamine-assisted vapor deposition approach to overcome these hindrances.The melamine not only compensates for the loss of nitrogen caused by high-temperature pyrolysis but also effectively etches the carbon substrate,increasing the external surface area and mesoporous porosity of the carbon substrate.These can provide more useful area for subsequent vapor deposition on active sites.The prepared 0.20Mela-FeNC catalyst shows a fourfold higher SD value and site utilization than the FeNC without the treatment of melamine.As a result,0.20Mela-FeNC catalyst exhibits a high ORR activity with a half-wave potential(E_(1/2))of 0.861 V and 12-fold higher ORR mass activity than the FeNC in acidic media.As the cathode in a H_(2)-O_(2)PEMFCs,0.20Mela-FeNC catalyst demonstrates a high peak power density of 1.30 W cm^(-2),outstripping most of the reported Fe-N-C catalysts.The developed melamine-assisted vapor deposition approach for boosting the SD and utilization of Fe-N-C catalysts offers a new insight into high-performance ORR electrocatalysts.
基金the support from the U.S. Department of Energy's Office of Energy Efficiency and Renewable Energy (EERE) under the Hydrogen and Fuel Cell Technologies Office Awards DE-EE0008426 and DE-EE0008423National Energy Technology Laboratory under Award DEFE0011585.
文摘Herein,ionomer-free amorphous iridium oxide(IrO_(x))thin electrodes are first developed as highly active anodes for proton exchange membrane electrolyzer cells(PEMECs)via low-cost,environmentally friendly,and easily scalable electrodeposition at room temperature.Combined with a Nafion 117 membrane,the IrO_(x)-integrated electrode with an ultralow loading of 0.075 mg cm^(-2)delivers a high cell efficiency of about 90%,achieving more than 96%catalyst savings and 42-fold higher catalyst utilization compared to commercial catalyst-coated membrane(2 mg cm^(-2)).Additionally,the IrO_(x)electrode demonstrates superior performance,higher catalyst utilization and significantly simplified fabrication with easy scalability compared with the most previously reported anodes.Notably,the remarkable performance could be mainly due to the amorphous phase property,sufficient Ir^(3+)content,and rich surface hydroxide groups in catalysts.Overall,due to the high activity,high cell efficiency,an economical,greatly simplified and easily scalable fabrication process,and ultrahigh material utilization,the IrO_(x)electrode shows great potential to be applied in industry and accelerates the commercialization of PEMECs and renewable energy evolution.
基金the National Natural Science Foundation of China(21975212)the Industry Leading Key Projects of Fujian Province(2022H0057)the High-level talent start-up Foundation of Xiamen Institute of Technology for financial support。
文摘Recycling graphite anode from spent lithium-ion batteries(SLIBs)is regarded as a crucial approach to promoting sustainable energy storage industry.However,the recycled graphite(RG)generally presents degraded structure and performance.Herein,the residual fluoride self-activated effect is proposed for the upgraded utilization of RG.Simple and low-energy water immersion treatment not only widens the interlayer spacing,but also retains appropriate fluoride on the surface of RG.Theoretical analysis and experiments demonstrate that the residual fluoride can optimize Li~+migration and deposition kinetics,resulting in better Li~+intercalation/deintercalation in the interlayer and more stable Li metal plating/stripping on the surface of RG,As a result,the designed LFP||RG full cells achieve ultrahigh reversibility(~100%Coulombic efficiency),high capacity retention(67%after 200 cycles,0.85 N/P ratio),and commendable adaptability(stable cycling without short-circuiting,0.15 N/P ratio).The energy density is improved from 334 Wh kg^(-1)of 1.1 N/P ratio to 367 Wh kg^(-1)of 0.85 N/P ratio(total mass based on cathode and anode).The exploration of RG by residual fluoride self-activated effect achieves upgraded utilization beyond fresh commercial graphite and highlights a new strategy for efficient reuse of SLIBs.
文摘Introduction: Acquired immunodeficiency syndrome is one of the leading causes of mortality among women of reproductive age and Mother to Child Transmission of Human immunodeficiency virus is still a challenge affecting many countries. Globally, an estimation of 180,000 children under 15 years acquire the Human immunodeficiency virus every day, and more than 90% of those infections are due to Mother to Child Transmission. The study sought to explore the experiences of mothers on the Elimination of Mother to Child Transmission-HIV services at Mtendere Clinic, Lusaka. Materials and Methods: Qualitative interpretive phenomenology study design was employed using in-depth interviews to collect data from a sample that was selected using purposive sampling technique. Thirteen participants were recruited, and these were HIV-positive mothers at least between the ages of 15 and 49 years and enrolled in the Elimination of Mother To Child Transmission-HIV program. The in-depth interviews were audiotape recorded and transcribed verbatim. Data was analyzed using thematic method. Findings: Three main themes that emerged are;living with HIV, support system and barriers to utilization of Elimination of Mother To Child Transmission-HIV services. Most of the participants expressed having acquired knowledge from the program, and received counselling and support from spouses, family as well as health personnel at Mtendere health facility which culminated into a positive experience and enhanced their uptake of the Elimination of Mother to Child Transmission-HIV services. However, barriers to service utilization were identified and these included fear of stigma, negative attitudes from health workers, long waiting times, lack of support and lack of transport to the health facility. Conclusion: Interventions such as community awareness campaigns on Elimination of Mother To Child Transmission-HIV, male involvement and implementing mother-to-mother peer support strategies in Elimination of Mother To Child Transmission-HIV service utilization should be prioritized so as to alleviate stigma and enhancing a positive experience for these mothers thus reducing on the Mother to Child HIV Transmission burden and mortality rates.
文摘Green mining and the formation of an effective and efficient development model have become key issues that aggregates enterprises around the world need to solve urgently.On the basis of analyzing the development status of aggregates industry in Xiluodu area,the paper studied the main problems faced in the construction of green aggregates mines at present,and proposed a"three-in-one"ecological,intelligent and efficient green mine construction model for"ecological development","green logistics"and"solid waste recycling"of aggregates.The study has certain theoretical value and practical significance for the construction of green aggregates mine in Xiluodu area.
基金supported by the National Key Research and Development Project(2019YFC1906601)China the Scientific and Technological Innovation Project of the Chinese Academy of Chinese Medical Sciences(C12021A04111)the Fundamental Research Funds for the Central Public Welfare Research Institutes(ZZ13-YQ-040).
文摘Herbal extraction residues(HERs)cause serious environmental pollution and resource waste.In this study,a novel green route was designed for the comprehensive reutilization of all components in HERs,taking Magnolia officinalis residues(MOR)as an example.The reluctant structure of MOR was first destroyed by alkali pretreatment to release the functional ingredients(magnolol and honokiol)originally remaining in MOR and to make MOR more accessible for hydrolysis.A metal–organic frame material MIL-101(Cr)with a maximum absorption capacity of 255.64 mg g^(-1)was synthesized to absorb the released honokiol and magnolol from the pretreated MOR solutions,and 40 g L^(-1)reducing sugars were obtained with 81.8%enzymatic hydrolysis rate at 10%MOR solid loading.Finally,382 mg L-1β-amyrin was produced from MOR hydrolysates by an engineered yeast strain.In total,1 kg honokiol,8 kg magnolol,and 7.64 kg β-amyrin could produce from 1 ton MOR by this cleaner process with a total economic output of 170,700 RMB.
文摘Carbon capture,utilization and storage(CCUS)technology is an important means to effectively reduce carbon emissions from fossil energy combustion and industrial processes.With the crisis of climate change,CCUS has attracted increasing attention in the world.CCUS technology as developed rapidly in China is technically feasible for large-scale application in various industries.The R&D and demonstration of CCUS in China Petroleum&Chemical Corporation(Sinopec)are summarized,including carbon capture,carbon transport,CO_(2)enhanced energy recovery(including oil,gas,and water,etc.),and comprehensive utilization of CO_(2).Based on the source-sink matching characteristics in China,two CCUS industrialization scenarios are proposed,namely,CO_(2)-EOR,CO_(2)-driven enhanced oil recovery using centralized carbon sinks in East China and CO_(2)-EWR,CO_(2)-driven enhanced water recovery(EWR)using centralized carbon sources from the coal chemical industry in West China.Finally,a CCUS industrialization path from Sinopec's perspective is suggested,using CO_(2)-EOR as the major means and CO_(2)-EWR,CO_(2)-driven enhanced gas recovery(CO_(2)-EGR)and other utilization methods as important supplementary means.
基金Supported by Undergraduate Training Program for Innovation and Entrepreneurship of Jiangxi Provincial Department of Education(S202310846004&S202310846007).
文摘At present,there is a great demand for building materials in the market,and the market prospect of building materials is relatively considerable.Through studying the composition of river sediment and its resource utilization in the field of building materials,this paper expounds the current domestic scholars research on river sediment in building materials,and summarizes the current problems and challenges,so as to provide a reference for the sustainable development of river sediment in the field of building materials.
文摘Plasma-based processes,particularly in carbon capture and utilization,hold great potential for addressing environmental challenges and advancing a circular carbon economy.While significant progress has been made in understanding plasma-induced reactions,plasma-catalyst interactions,and reactor development to enhance energy efficiency and conversion,there remains a notable gap in research concerning overall process development.This review emphasizes the critical need for considerations at the process level,including integration and intensification,to facilitate the industrialization of plasma technology for chemical production.Discussions centered on the development of plasma-based processes are made with a primary focus on CO_(2) conversion,offering insights to guide future work for the transition of the technology from laboratory scale to industrial applications.Identification of current research gaps,especially in upscaling and integrating plasma reactors with other process units,is the key to addressing critical issues.The review further delves into relevant research in process evaluation and assessment,providing methodological insights and highlighting key factors for comprehensive economic and sustainability analyses.Additionally,recent advancements in novel plasma systems are reviewed,presenting unique advantages and innovative concepts that could reshape the future of process development.This review provides essential information for navigating the path forward,ensuring a comprehensive understanding of challenges and opportunities in the development of plasma-based CCU process.
基金supported by the National Natural Science Foundation of China (No.U1960202).
文摘The machine learning models of multiple linear regression(MLR),support vector regression(SVR),and extreme learning ma-chine(ELM)and the proposed ELM models of online sequential ELM(OS-ELM)and OS-ELM with forgetting mechanism(FOS-ELM)are applied in the prediction of the lime utilization ratio of dephosphorization in the basic oxygen furnace steelmaking process.The ELM model exhibites the best performance compared with the models of MLR and SVR.OS-ELM and FOS-ELM are applied for sequential learning and model updating.The optimal number of samples in validity term of the FOS-ELM model is determined to be 1500,with the smallest population mean absolute relative error(MARE)value of 0.058226 for the population.The variable importance analysis reveals lime weight,initial P content,and hot metal weight as the most important variables for the lime utilization ratio.The lime utilization ratio increases with the decrease in lime weight and the increases in the initial P content and hot metal weight.A prediction system based on FOS-ELM is applied in actual industrial production for one month.The hit ratios of the predicted lime utilization ratio in the error ranges of±1%,±3%,and±5%are 61.16%,90.63%,and 94.11%,respectively.The coefficient of determination,MARE,and root mean square error are 0.8670,0.06823,and 1.4265,respectively.The system exhibits desirable performance for applications in actual industrial pro-duction.
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)Chinese Academy of Sciences Talent Introduction Youth Program(No.SINAP-YCJH-202303)Chinese Academy of Sciences Special Research Assistant Funding Project and Shanghai Pilot Program for Basic Research-Chinese Academy of Science,Shanghai Branch(JCYJ-SHFY-2021-003)。
文摘A molten salt reactor(MSR)has outstanding features considering the application of thorium fuel,inherent safety,sustainability,and resistance to proliferation.However,fissile material^(233)U is significantly rare at the current stage,thus it is difficult for MSR to achieve a pure thorium-uranium fuel cycle.Therefore,using plutonium or enriched uranium as the initial fuel for MSR is more practical.In this study,we aim to verify the feasibility of a small modular MSR that utilizes plutonium as the starting fuel(SM-MSR-Pu),and highlight its advantages and disadvantages.First,the structural design and fuel management scheme of the SM-MSR-Pu were presented.Second,the neutronic characteristics,such as the graphite-irradiation lifetime,burn-up performance,and coefficient of temperature reactivity were calculated to analyze the physical characteristics of the SM-MSR-Pu.The results indicate that plutonium is a feasible and advantageous starting fuel for a SM-MSR;however,there are certain shortcomings that need to be solved.In a 250 MWth SM-MSR-Pu,approximately 288.64 kg^(233)U of plutonium with a purity of greater than 90% is produced while 978.00 kg is burned every ten years.The temperature reactivity coefficient decreases from -4.0 to -6.5 pcm K^(-1) over the 50-year operating time,which ensures a long-term safe operation.However,the amount of plutonium and accumulation of minor actinides(MAs)would increase as the burn-up time increases,and the annual production and purity of^(233)U will decrease.To achieve an optimal burn-up performance,setting the entire operation time to 30 years is advisable.Regardless,more than 3600 kg of plutonium eventually accumulate in the core.Further research is required to effectively utilize this accumulated plutonium.
基金supported by Research Project Supported by Horizon Europe Framework Programme(101183092)Shanxi Scholarship Council of China(2023-128)+2 种基金National Natural Science Foundation of China(22208328)Fundamental Research Program of Shanxi Province(20210302124618)Small and mediumsized oriented scientific and technological enterprises innovation ability improvement project of Shandong Province(2023TSGC0004)。
文摘In this study,an integrated technology is proposed for the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3)in a high-gravity environment.The effects of absorbent type,high-gravity factor,gas/liquid ratio,and initial BaCl2concentration on the absorption rate and amount of CO_(2)and the preparation of BaCO_(3)are investigated.The results reveal that the absorption rate and amount of CO_(2)follow the order of ethyl alkanolamine(MEA)>diethanol amine(DEA)>N-methyldiethanolamine(MDEA),and thus MEA is the most effective absorbent for CO_(2)absorption.The absorption rate and amount of CO_(2)under high gravity are higher than that under normal gravity.Notably,the absorption rate at 75 min under high gravity is approximately 2 times that under normal gravity.This is because the centrifugal force resulting from the high-speed rotation of the packing can greatly increase gas-liquid mass transfer and micromixing.The particle size of BaCO_(3)prepared in the rotating packed bed is in the range of 57.2—89 nm,which is much smaller than that prepared in the bubbling reactor(>100.3 nm),and it also has higher purity(99.6%)and larger specific surface area(14.119 m^(2)·g^(-1)).It is concluded that the high-gravity technology has the potential to increase the absorption and utilization of CO_(2)in alkanolamine solution for the preparation of BaCO_(3).This study provides new insights into carbon emissions reduction and carbon utilization.
基金supported by the Scientific Research Fund of the Second Institute of Oceanography,MNR(Grant nos.JG2211 and JG2212)the National Polar Special Program“Impact and Response of Antarctic Seas to Climate Change”(Grant nos.IRASCC 01-01-02A and IRASCC 02-02)+1 种基金the National Key Research and Development Program of China(Grant no.2022YFE0136500)the National Natural Science Foundation of China(Grant no.41976228)。
文摘Dissolved oxygen(DO)and apparent oxygen utilization(AOU)are essential parameters for evaluating the impact of climate change on marine ecosystems.In this study,we utilized data on DO and AOU collected from the Amundsen Sea(western Antarctic)and the Cosmonaut Sea(eastern Antarctic)during the 38th Chinese National Antarctic Research Expedition,along with chlorophyll a(Chl a)data,to analyze the impact of primary production and the spatial distribution and structural features of water masses in these regions.The findings show that the standard deviation range of parallel DO samples is between 0.1 and 3.9μmol·L^(-1),meeting the precision criteria of the survey method.AOU values lower than 0.0μmol·L^(-1) were commonly observed in the surface waters of both regions,with the highest incidence in the polynya of Amundsen Sea,indicating a strong influence of high primary production.The Cosmonaut Sea exhibited the highest AOU values(higher than 160.0μmol·L^(-1))in the 75-500 m layer,while AOU value in the Amundsen Sea did not exceed 160.0μmol·L^(-1),suggesting potential upwelling of Circumpolar Deep Water to 100 m in the Cosmonaut Sea with minimal changes in its properties,whereas significant changes were noted in the properties of upwelling modified Circumpolar Deep Water in the Amundsen Sea.AOU values lower than 125.0μmol·L^(-1)were detected in the near-bottom waters of the Cosmonaut Sea,indicating the presence of Antarctic Bottom Water.